
Theta Neuron Networks: Robustness to Noise in Embedded Applications

Sam McKennoch, Preethi Sundaradevan, and Linda G. Bushnell
Abstract - In this paper, we train a one-layer Theta Neuron
Network (TNN) to perform a Braitenberg obstacle avoidance
algorithm on a Khepera robot. The Theta neuron model is more
biologically plausible than the leaky integrate and fire model
typically used in Spiking Neural Networks. Our motivation is to
determine if the dynamical properties of the theta neuron model
can be leveraged to increase the noise robustness in an embed-
ded application. We compare Khepera obstacle avoidance
results with traditional Artificial Neural Network and TNN
implementations under different levels of sensor noise. As the
noise increases, the performance of the TNN is the least
affected. At high noise levels, the ANN and Braitenberg imple-
mentations calculate the incorrect turn direction 42% more
often than the TNN and deviate from a straight path trajectory
over 10 times as far. The results demonstrate that TNNs war-
rants further development for engineering applications.

I. INTRODUCTION

As the field of neuroscience continues to develop in leaps
and bounds, there is an increasingly large opportunity for the
adaptation of neuroscience concepts into the engineering
community. Spiking neural network (SNN) research is one
area that has greatly benefited from this cross-pollination in
the past. The initial development of Artificial Neural Net-
works (ANNs) was inspired by the way biological nervous
systems, such as the brain, process information. Likewise
SNNs, such as those used in the SpikeProp training algo-
rithm [3], add greater biological realism by encoding the
exact timings of spikes rather than just the rate at which they
are received. By using individual spikes as the signals sent
between neurons, SNNs are able to include spatio-temporal
information in communication similar to that of real neurons.
SNNs have been shown to be computationally superior to
ANNs even in the presence of noise and imprecision [7]. The
implementation of phenomena such as spike timing depen-
dent plasticity (STDP) and temporal coding lend SNNs
greater biological plausibility over ANNs.

The use of SNNs in controllers for embodied agents began
only recently, but they have already been shown as superior
to continuous-time recurrent neural networks (CTRNNs) [7].
These SNNs have been implemented using a variety of dif-
ferent approaches. Work on SNNs has used gradient-descent
based methods to train SNNs under a variety of different
conditions, including multiple output spikes [4] and faster
training times [13], [14], [17]. Genetic Algorithms (GAs)

have also been used to evolve the weights of the SNNs
online for wall-following tasks in the presence of noise [9].
Another recent SNN learning algorithm is based on an STDP
rule to modify the connection weights for obstacle avoidance
in a recurrent SNN [15]. A recurrent SNN was also used to
train a robot to imitate and generalize the behavior of a
Khepera robot which was initially controlled by a Braiten-
berg-type algorithm [5]. A further approach to training SNNs
is based on self-organization where the presence or absence
of neural connections was changed without adjusting the
value or weight of the connections [1].

The type of neuron model used with SpikeProp and most
machine learning applications is the leaky integrate and fire
(IF) model. This model is very powerful for its simplicity,
but misses a lot of the interesting dynamics that occur with
biological neurons [6], [10]. An incremental step into higher
complexity is the Theta neuron model, which is canonical for
neuron models with a Type I frequency response. Theta neu-
rons are able to model observed neuron behaviors such as
activity-dependent thresholding [11], a property which is
exploited in this paper to improve noise robustness in a
trained Theta Neuron Network (TNN).

The purpose of this paper is as follows: to provide confir-
mation of the results published in [16]; to demonstrate a
widely-used embedded application with TNNs; and to dem-
onstrate some of the properties of TNNs that differentiate
them from ANNs or other types of SNNs. More specifically,
this paper applies well-known noise properties of sensors to
an embedded obstacle avoidance application of TNNs. Noise
robustness has long been one metric by which machine
learning methods are judged [2], [12]. In our case, noise is
used to demonstrate the different input-output sensitivities of
ANNs vs. TNNs. While the sensitivity for the trained ANN
and the Braitenberg algorithm is typically constant, the sensi-
tivity for the TNN varies with the sizes of the sensor inputs.

This paper is organized as follows. Section II provides a
background on theta neurons. Section III details the experi-
mental setup of the algorithm implementations. Section IV
includes the results and analysis of the three implementations
of the Braitenberg obstacle avoidance algorithm each with
and without noise on the Khepera robot and in simulation.
The properties of TNNs are examined relative to their ability
to effectively filter out noise under the right conditions. Sum-
mary and future work follow in Section V.

II. SPIKING NEURON BACKGROUND

A. Leaky Integrate and Fire Model

The leaky IF model is a widely-used neuron model con-

Manuscript received January 31, 2007. This work was supported in part
by the US National Science Foundation Grant No. ECS-0322618.

All authors are affiliated with the Electrical Engineering Dept., Univer-
sity of Washington, Seattle, WA 98195-2500 USA (Corresponding author:
skennoch@u.washington.edu).

sisting of a leaky capacitor whose potential simulates the
membrane potential of a spiking neuron [7]. The leaky
capacitor is modeled by a capacitor, C, in parallel with a
resistor, R, and is driven by a current, I(t):

(1)

where u(t) describes the membrane potential. As soon as the
membrane potential crosses an activation threshold value, ,
it is reset to a baseline value of ur for an interval called the
refractory period during which the ability of the neuron to
fire again is restrained. Spikes are able to propagate from
layer to layer and eventually result in a time series of spikes
at the output layer. One generalization of the leaky IF neuron
is the Spike Response Model (SRM), used in SpikeProp (a
gradient-descent based SNN training method [3]).

B. Theta Neuron Model

Although the leaky IF model is the most popular model in
engineering applications of SNNs, it misses many interesting
neuron dynamics such as spike latencies and activity-depen-
dent thresholding. A plethora of models exist, which with
increasing complexity model observed neuron dynamics [6],
[11]. These models are largely unexplored in the engineering
machine learning domain.

Neuron models can be categorized by their frequency
response. As input current into Type I neuron is increased, at
some point the frequency of output spikes smoothly begins
to increase upward from 0. For Type II neurons, due to a
Hopf bifurcation, the frequency of output spikes jumps from
0 to some non-zero value. The leaky IF model is Type I.

A modification of the leaky IF model which contains more
realistic neuron dynamics is the quadratic neuron model:

(2)

where urest is the resting potential and uc is the critical volt-
age, which if passed means that the neuron will soon fire. A
canonical model to which any Type I neuron model
described by smooth ODEs, including the quadratic neuron
[8], can be mapped to is:

(3)

where is a scaling constant; is the neuron phase; and I(t)
is the input current that drives the dynamics. The neuron
phase is directly mappable to the membrane potential. This
equation describes the trajectory of neuron phase. Neurons
described by this model are called theta neurons. Canonical
models do not generally exist for Type II neurons due in part
to the wider range of behaviors exhibited by Type II neurons.

The input current is defined as the sum of a baseline cur-
rent plus a series of current impulses at times tj with size
modulated by weights wj:

(4)

When the baseline current, Io, is less than zero, two fixed

points can be found by setting (3) equal to zero. One fixed
point is a saddle point, and the other is a stable fixed point.
The neuron phase moves around its phase circle toward the
stable fixed point and away from the saddle point. When the
phase passes through , the neuron is said to have fired. The
phase at neuron j right before an input spike from neuron n is
received is defined as . Because input spikes are modelled
as impulses, the phase at neuron j right after an input spike
from neuron n is

(5)

which follows from equations (3) and (4). As in [16], the
remaining time until the next output spike as a function of
the neuron phase is:

(6)

If there are input spikes, F is discontinuous and is broken up
into continuous pieces, which is demonstrated graphically in
Figure 1:

(7)

where N is the number of inputs to the neuron and .
Activity-dependent thresholding is one property that dis-

tinguishes the theta neuron model from the leaky IF model.
In the leaky IF model, an input spike of a given magnitude
will change the output firing time by an equal amount
regardless of the input spike timing. However, in the theta
neuron model, a spike’s effect on the phase is determined by
the magnitude and timings of input spikes already received.

C. Output Layer Weight Training

A gradient based method for training the output firing

RCdu
dt
------ u t()– RI t()+=

ϑ

τdu
dt
------ ao u urest–() u uc–() RI+=

θ∂
t∂

------ 1 θcos–() αI t() 1 θcos+()+=

α θ

I t() Io wjδ t tj–()

j 1=

J

∑+=

π

θnj
-

θnj
+ θnj

- αwnj 1 θnj
-cos+()+=

F t() θd
1 θcos–() αIo 1 θcos+()+

θ t()

π

∫ F θ t()
π= =

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

t

θ

Changes in Neuron Phase with Input Spikes

F
1

t
1

F
2

t
2

F
3

t
s

t
BL

Trajectory with 2 Spikes
Baseline Trajectory

Fig. 1. The Remaining Time Function
The neuron phase, , is shown over time given an initial phase just
greater than the saddle point. Two input spikes occur at times 23 and 27.
Given that the input spikes at t1 and t2 have equal magnitudes, the effect
of the spike at t2 in changing the output firing time is less than that of the
input spike at t1.

θ

F ti() θd
1 θcos–() αIo 1 θcos+()+

θj
+

θj 1+
-

∫
j i≥
j N<

∑ F
θj

+

θj 1+
-

j i≥
∑= =

θN
- π=

times of a single layer of theta neurons has recently been
developed [16] and is summarized here. Error is defined as a
Sum of Squared Errors (SSE) in output spike times for all
output neurons, O.

(8)

The basic weight learning rule for the weight between input
n and neuron p is:

(9)

where is the learning rate. The first gradient term follows
from (8) and the second term is unity. For the third term:

(10)

In [16], the author ignores the summation part of this term
since there is no a-priori information about spikes that will
occur after the current spike being analyzed. Thus:

(11)

The first term in (11) follows from (6) and the second fol-
lows from (5). Putting it all together:

(12)

where

(13)

and

(14)

As is the case with the basic back-prop algorithm, y is calcu-
lated by moving forward through the network, is calcu-
lated by propagating the errors back through the network.
is specific to a neuron, regardless of which input is being
examined. For our system the interaction between the trans-
fer function and input timings do not allow y to be separated
out, and so like the weights, y is specifically a measure of the
effect of an output spike from neuron n to neuron p.

III. EXPERIMENTAL SETUP

A. Implementation of Obstacle Avoidance Algorithm

In this paper, three different implementations of the Brait-
enberg obstacle avoidance algorithm on a Khepera II robot
are investigated. The Khepera II is a popular mobile robot
which contains eight infrared sensors for distance measure-
ments whose values fall in the range 0 to 1023. In our exper-
iments, six of the robot’s sensors (ignoring the two on the
back side) are used as inputs to control the robot’s two wheel
motors.

The first implementation is a direct programming of the
Braitenberg algorithm, which is simply a scaled linear com-

bination of the input sensor values. Specifically:

(15)

where is an output motor vector; is an input sensor vec-
tor; KSCALING (50 in our case) linearly controls the sensi-
tivity of motor values to sensor values; KSPEED (5 in our
case) determines the baseline speed; and is a coefficient
matrix that determines the bias for each input sensor. In this
paper, a simple matrix was used to help clarify the results:

(16)

The second and third implementation are types of neural
networks, and therefore require a training set for supervised
learning. The networks were trained on data that fell into
four different regions as shown in Table 1. These cases are
the primary situations that the robot will encounter when
avoiding obstacles.

In the second implementation a standard rate-encoded
ANN was used. The network has six inputs for the six sen-
sors, two outputs for the two motors, and eight hidden neu-
rons. The squashing functions are sigmoidal and linear for
the hidden and output layers respectively. The training error
tolerance is 1 (0.81% of the motor value range), trained using
QuickProp.

The third implementation is a single layer composed of
two theta neurons corresponding to the two motor outputs.
Each neuron has seven input weights for the six sensors and
a reference input. Sensor readings must be encoded into
input spike times and output spike times must be decoded
into motor values. The sensor readings are encoded into
input times so that high sensor values correspond to smaller
input times:

(17)

Thus input sensor values of 0 to 1023 correspond to input
times of 5 to 1. In the theta neuron, the sensitivity of the out-
put spike time decreases dramatically as the phase increases
above the saddle point. The simple linear encoding allows
the theta neuron to be pre-programmed to have a lower sensi-
tivity to low sensor values in order to deal with the expected
noise conditions. The reference time, tr is equal to 1.

For the decoding of the theta neuron output spike times,
the range of expected motor values can be calculated from
the Braitenberg algorithm. The output spike times are trained
to fall within the middle range of possible output spike times
as determined by network constants like Io. Table 2 contains
a full network constants list. Initial theta offset is the offset of

E 1
2
--- toj

toj

d–()
2

oj O∈
∑=

Δwnp η E∂
wnp∂

------------– η E∂
top
∂

top
∂

F∂
--------- F∂

wnp∂
------------–= =

η

F∂
wnp∂

------------ F∂
θnp

+∂

θnp
+∂

wnp∂
------------ F∂

θjp
+∂

θjp

+∂
wjp∂

----------- F∂
θjp

-∂

θjp
-∂

wnp∂
------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

j n>
∑+=

F∂
wnp∂

------------ F∂
θnp

+∂

θnp
+∂

wnp∂
------------≈

Δwnp ηδpynp–=

δp top
top

d–()=

ynp
α– 1 θnp

-cos+()

1 θnp
+cos–() αIo 1 θnp

+cos+()+
--=

δ
δ

m c s⋅
KSCALING
------------------------------ KSPEED+=

m s

c

c 1– 1– 1– 1 1 1
1 1 1 1– 1– 1–

=

TABLE 1: Neural Network Training Regions

Region Sensor Values Obstacle Location

0 <100 <100 <100 <100 <100 <100 None Within Sight

1 <100 <100 <100 >900 >900 >900 Right-Side

2 <900 <900 <900 >100 >100 >100 Left-Side

3 <100 <100 >900 >900 <100 <100 Directly Ahead

ti 5
4si

1023
------------–=

the initial neuron phase above the saddle point. Thus the for-
mula for decoding output spike times into motor values is:

(18)

The TNN was trained with the method described in
Section II.C. Because only a single layer of theta neurons is
being used, there are limitations on what types of functions
are trainable. For example, consider input vectors that fall in
regions 0 and 3 from Table 1. In both cases, the Braitenberg
algorithm dictates that the Khepera continue to move for-
ward at KSPEED. In reality, the readings of one side of sen-
sors is usually slightly different than the other side, causing
the robot to have a slight direction bias. Regardless, a single
theta neuron cannot produce the same output for both of
these cases. In region 0, a series of late input spikes will have
a reduced effect on the output spike time, thus the output
spike time will mostly be determined by the reference time
spike. In region 3, the two high sensors readings will result in
earlier input spikes times, and thus earlier output spike times
and higher motor speeds. The TNN, lacking a hidden layer,
is therefore overconstrained. However, it is still possible to
train the TNN so that it turns in the correct direction, even if
the speed of movement is not always accurate. The overall
goal of avoiding obstacles is much more dependent on turn-
ing in the right direction than it is on speed. So training to a
very low SSE was not possible. Instead a stopping criteria
based on the testing and training SSE was used as it often
used in ANNs to prevent memorization over generalization.

B. Sensitivity to Noise

In this obstacle avoidance experiment, low sensor readings
are injected with more noise than higher readings. There are
many cases of sensors which have increased sensitivities to
low inputs, and therefore more noise sensitivity at these low
inputs (ChemFETs for example). Alternatively, the environ-
ment can also create more noise in low sensor readings, such
as when there is a large amount of air particulates.

Sensitivity to sensor noise has a large impact on obstacle
avoidance. For the Braitenberg implementation the differen-
tiation is straightforward and results in a constant sensitivity:

(19)

For the case of the ANN, it is assumed that each of the hid-

den nodes is not in saturation, but rather is in the approxi-
mately linear region of the sigmoid since the Braitenberg
algorithm used for training is linear. Also the slopes of the
linear activation functions are denoted by ki.

(20)

where N is the number of hidden layer neurons; ws are
weights between input and hidden layer nodes; and wh are
weights between hidden and output layer nodes. Sensitivity
of an unsaturated ANN node is approximately constant.

For the TNN case, encoding and decoding must be taken
into account. From the results in Section II:

(21)

Expanding this equation:

(22)

Figure 2 shows how this sensitivity changes as a function of
input sensor readings. This dynamic sensitivity range is a
direct result of activity-dependent thresholding. Spikes
received when the neuron phase is close to , corresponding
to low sensors readings, have a reduced effect on output
spike times and therefore the motor values as well.

IV. RESULTS AND ANALYSIS OF KHEPERA EXPERIMENT

In combining an obstacle avoidance experiment with noise
sensitivity investigations, it is helpful to separate sensitivity
to noise from the effect of noise on performance in avoiding
obstacles. Three experiments were performed in addition to
simulations.

Figure 3 shows the simulation results of how often noise

mi

tsi
tsmin

–

tsmax
t– smin

⎝ ⎠
⎜ ⎟
⎛ ⎞

mmax mmin–() mmin+

tsi
25–

17
----------------⎝ ⎠
⎛ ⎞ 122.76() 56.38–

= =

TABLE 2: Theta Neuron Network Parameters

Parameter Value

Alpha 1

Baseline Current -0.005

Initial Theta Offset 0.0001

Simulation Timestep 0.001

Learning Rate 0.000015

∂mi
∂sj

cij
KSCALING
------------------------------ 0.02= =

∂mi
∂sj

∂mi
∂hn

∂hn
∂sj
-------- ki wsjn

w
hni

n 1=

N

∑≈

n 1=

N

∑=

∂mi
∂sj

∂mi
∂tsi

tsi
∂

F∂
------- F∂

θj
+∂

θj

+∂

θj
-∂

-------- F∂
θj

-∂
-------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ θj

-∂
tj∂

∂tj
∂sj
-------=

∂mi
∂sj
--------- 0.0282 1

1 θj
-cos–() αIo 1 θj

-cos+()+

1 θj
+cos–() αIo 1 θj

+cos+()+

1 αwji θj
-sin–()

–
⎝

⎠

⎜

⎟

⎛

⎞

=

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16
x 10

−3

s
i

∂m
1/∂

s i

Sensitivity of Motor 1 to Sensor i

s
1

s
4

Fig. 2. Sensitivity in Theta Neurons
The TNN is about 30% less sensitive to low input sensor values
than high input sensor values as shown in this figure. For the case
of s4, it is assumed that s1 to s3 were high sensor value readings.
Due to the activity-dependent threshold property of the model,
the overall sensitivity is decreased further in the s4 case.

π

causes the robot to turn in the incorrect direction for each of
three implementations across two of the regions in Table 1
and for four different noise levels. Noise level 0 indicates
that no noise is added to the sensor readings. For noise
greater than zero:

(23)

where c is the noise level; k is a constant equal to about 92;
and s is the sensor reading to which noise is added. This
method of adding noise creates more noise for smaller sensor
values. Figure 4 shows directly how adding sensor noise has
changed the motor value.

For the first Khepera experiment, the robot is set to follow
a straight path of length 15 cm and its deviation from the
path is measured. Each implementation, at different noise
levels, was run 5 to 10 times and outlying data was removed.
The average distance from the straight path as well as its
standard deviation increases with more noise. This increase
is due to the sudden turns made by the robot in response to
the false alarms raised by the noisy readings. While the ANN
and Braitenberg implementations deviated from the path
considerably, the TNN was able to suppress the effect of
noise and stay nearly straight, deviating less than a tenth of
the distance of that of the other two implementation; see Fig-
ure 5.

In the second experiment, the robot is set 5 to 10 cm away
from obstacles to approach them at specific angles and the
closest distance is measured. Table 3 shows the complete
results. At 90 degrees, the TNN is not able to avoid the
obstacles, regardless of noise, because as discussed in
Section III, the TNN training is overconstrained. As the
robot approaches an obstacle that is directly ahead, its speed
decreases to nearly a dead stop, preventing it from turning
quickly. Another interesting feature is that the Braitenberg
implementation was able to avoid obstacles at 90 degrees

better in the presence of noise. As can be seen in (15), if the
sensor values are perfectly balanced, the robot will move
straight into an obstacle. Noise disrupts this balance. But in
general, the robot gets closer to the obstacle in the presence
of noise for the ANN and Braitenberg than for the TNN. For
example, at 30 degrees, the ANN's performance decreased
38% due to noise while the change was only 11% for the
TNN, demonstrating the TNN's more consistent, steady
behavior.

The third experiment involved letting the robot wander
around in an area containing many obstacles and then count-
ing the number of obstacles touched. The results were sur-
prising in that even though the ANN and Braitenberg
implementations were affected by noise, their performance
in avoiding obstacles stayed the same, except in the case
described in the previous paragraph, where the performance
improved. The TNN behavior in the presence of high noise
did not change. It continued to get stuck when the angle of
approach was close to 90 degrees, and avoided all other
obstacles.

V. CONCLUSION AND FUTURE WORK

This paper has provided confirmation of the TNN training
method published in [16], demonstrated obstacle avoidance
on a Khepera robot using TNNs, and demonstrated how the
activity dependent threshold property of TNNs, which is not
present in ANNs and leaky IF SNNs, can be useful for noise
robustness. The effect of noise on the behavior of the TNN
has been shown to be small. At high noise levels, the ANN
and Braitenberg implementations deviate from a straight path
trajectory over 10 times as far as the TNN implementation.
However, we have also shown that insensitivity to noise does
not necessarily improve obstacle avoidance performance.
Sometimes the effect of noise, which was felt greater by the
ANN and Braitenberg implementations, is beneficial in
breaking symmetry. Other types of experiments, such as line

s s kc

sc 1+

⎝ ⎠
⎜ ⎟
⎛ ⎞

N 0 1,()+=

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Noise Level

%
 I

n
co

rr
e

ct
 T

u
rn

s

The % of Turns in the Wrong Direction for Different Levels of Noise

Region 0; Braintenberg
Region 0; ANN
Region 0; TNN
Region 3; Braitenberg
Region 3; ANN
Region 3; TNN

Fig. 3. Noise vs % Correct Turning Direction in Simulation
In both region 0 and 3, as noise increase the performance of the TNN
implementation improves relative to the other two implementations. For
regions 1 and 2 there were no cases of wrong turns.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

Noise Level

%
 C

h
a

n
g

e
 in

 M
o

to
r

V
a

lu
e

% Change in Motor Value with Noisy Sensors

Region 0; Braintenberg
Region 0; ANN
Region 0; TNN
Region 3; Braitenberg
Region 3; ANN
Region 3; TNN

Fig. 4. Noise vs % Change in Motor Values in Simulation
As the sensor noise level increases, the Braitenberg and ANN
implementations experience a greater % change in their motor values
relative to the TNN.

following might better demonstrate increased performance
through reduced noise sensitivity.

Future work includes investigating multi-layer TNNs in
order to make TNNs which are universal function approxi-
mators and to be able to investigate more complicated
embedded applications, which further take advantage of
TNN properties.

ACKNOWLEDGEMENTS

The authors thank Thomas Voegtlin for many helpful dis-
cussions.

REFERENCES

[1] Alnajjar, F. and Murase, K., “Self-Organization of Spiking Neural Net-
work Generating Autonomous Behavior in a Real Mobile Robot,”
International Conference on Computational Intelligence for Model-
ling, Control and Automation, 2005.

[2] Beck, S. and Ghosh, J., “Noise sensitivity of static neural network
classifiers,” Proceedings of SPIE Science of Artificial Neural Net-
works, Vol. 1709, April 1992.

[3] Bohte, S., “Spiking Neural Networks,” Ph.D. dissertation, Centre for
Mathematics and Computer Science (CWI), Amsterdam, 2003.

[4] Booij, O., and Nguyen, H., “A gradient descent rule for spiking neu-
rons emitting multiple spikes,” Information Processing Letters, Vol.
95, No. 6, 30 September 2005, pps. 552-558.

[5] Burgsteiner, H., “Training networks of biological realistic spiking neu-
rons for real-time robot control,” Proceedings of the 9th International
Conference EANN, 2005.

[6] Feng, J. F., “Is the integrate-and-fire model good enough? - a review,”
Neural Networks, Vol 14., pps. 955-975.

[7] Florian, R. V., “Biologically inspired neural networks for the control of
embodied agents,” Technical Report Coneural-03-03, 2003.

[8] Gerstner, W., and Kistler, W., Spiking Neuron Models. Cambridge,
UK: Cambridge University Press, 2002.

[9] Hagras, H.A.K., Pounds-Cornish, A., Colley, M.J., Callaghan, V., and
Clarke, G., “Evolving Spiking Neural Network Controllers for Auton-
omous Robots,” Proceedings of the 2004 IEEE International Confer-
ence on Robotics and Automation, New Orleans, 2004.

[10] Izhikevich, E. M., “Neural Excitability, Spiking, and Bursting,” Inter-
national Journal of Bifurcation and Chaos, Vol. 10, 2000, pps. 1171 -
1266.

[11] Izhikevich, E. M., “Which Model to Use for Cortical Spiking Neu-
rons?,” IEEE Transactions on Neural Networks, Vol. 15, 2004, pps.
1063-1070.

[12] Kalapanidas, E., Avouris, N., Craciun M., and Neagu, D., “Machine
Learning Algorithms: A study on noise sensitivity,” Proceedings of the
1st Balcan Conference in Informatics, Thessaloniki, November 2003,
pp. 356-365.

[13] McKennoch, S., Liu, D., and Bushnell, L.G., “Fast Modifications of
the SpikeProp Algorithm,” IEEE World Congress on Computational
Intelligence (WCCI), Vancouver, BC, July 2006.

[14] Schrauwen, B. and Van Campenhout, J., “Extending SpikeProp,” Pro-
ceedings of the International Joint Conference on Neural Networks,
2004. pp. 471-476.

[15] Soula, H., Alwan, A. and Beslon, G., “Learning at the edge of chaos:
Temporal coupling of spiking neuron controller of autonomous
robotic,” Proceedings of AAAI Spring Symposia on Developmental
Robotic, 2005.

[16] Voegtlin, T., “Temporal Coding using the Response Properties of Spik-
ing Neurons,” Proceedings of Advances in Neural Information Pro-
cessing Systems (NIPS), Vol. 19, 2006.

[17] Xin, J., & Embrechts, M., “Supervised learning with spiking neural
networks,” Proceedings of International Joint Conference on Neural
Networks (IJCNN), 2001, pp. 1772-1777.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

Noise Level

M
e
a
n
 (

cm
)

Braitenberg
ANN
TNN

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

Noise Level

S
ta

n
d
a
rd

 d
e
vi

a
tio

n
 (

cm
)

Braitenberg
ANN
TNN

(a) (b)
Fig. 5. Experimental Straight Line Path Deviation for Different Noise Levels

Both the mean (a) and the standard deviation (b) of the ANN and Braitenberg implementations increase dramatically as more noise is
introduced. However, the TNN behavior is nearly unchanged.

TABLE 3: Experimental Minimum Distance from Obstacle for Different Angles of Arrival

Without Noise (c=0) With High Noise (c=3)

Angle Braitenberg ANN TNN Braitenberg ANN TNN

30 3.13 4.57 1.88 2.90 2.83 1.67

60 2.13 3.21 1.00 2.20 1.88 0.94

90 0.50 1.71 0.00 1.10 0.55 0.00

	I . Introduction
	II . Spiking Neuron Background
	A. Leaky Integrate and Fire Model
	(1)

	B. Theta Neuron Model
	(2)
	(3)
	(4)
	(5)
	(6)
	Fig. 1. The Remaining Time Function
	(7)

	C. Output Layer Weight Training
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)
	(14)

	III . Experimental Setup
	A. Implementation of Obstacle Avoidance Algorithm
	(15)
	(16)
	TABLE 1 : Neural Network Training Regions

	(17)
	(18)
	TABLE 2 : Theta Neuron Network Parameters

	B. Sensitivity to Noise
	(19)
	(20)
	(21)
	(22)
	Fig. 2. Sensitivity in Theta Neurons

	IV . Results and Analysis of Khepera Experiment
	(23)
	Fig. 3. Noise vs % Correct Turning Direction in Simulation
	Fig. 4. Noise vs % Change in Motor Values in Simulation

	V . Conclusion and Future Work
	Acknowledgements
	References
	[1] Alnajjar, F. and Murase, K., “Self-Organization of Spiking Neural Network Generating Autonomo...
	[2] Beck, S. and Ghosh, J., “Noise sensitivity of static neural network classifiers,” Proceedings...
	[3] Bohte, S., “Spiking Neural Networks,” Ph.D. dissertation, Centre for Mathematics and Computer...
	[4] Booij, O., and Nguyen, H., “A gradient descent rule for spiking neurons emitting multiple spi...
	[5] Burgsteiner, H., “Training networks of biological realistic spiking neurons for real-time rob...
	[6] Feng, J. F., “Is the integrate-and-fire model good enough? - a review,” Neural Networks, Vol ...
	[7] Florian, R. V., “Biologically inspired neural networks for the control of embodied agents,” T...
	[8] Gerstner, W., and Kistler, W., Spiking Neuron Models. Cambridge, UK: Cambridge University Pre...
	[9] Hagras, H.A.K., Pounds-Cornish, A., Colley, M.J., Callaghan, V., and Clarke, G., “Evolving Sp...
	[10] Izhikevich, E. M., “Neural Excitability, Spiking, and Bursting,” International Journal of Bi...
	[11] Izhikevich, E. M., “Which Model to Use for Cortical Spiking Neurons?,” IEEE Transactions on ...
	[12] Kalapanidas, E., Avouris, N., Craciun M., and Neagu, D., “Machine Learning Algorithms: A stu...
	[13] McKennoch, S., Liu, D., and Bushnell, L.G., “Fast Modifications of the SpikeProp Algorithm,”...
	[14] Schrauwen, B. and Van Campenhout, J., “Extending SpikeProp,” Proceedings of the Internationa...
	[15] Soula, H., Alwan, A. and Beslon, G., “Learning at the edge of chaos: Temporal coupling of sp...
	[16] Voegtlin, T., “Temporal Coding using the Response Properties of Spiking Neurons,” Proceeding...

	Fig. 5. Experimental Straight Line Path Deviation for Different Noise Levels
	[17] Xin, J., & Embrechts, M., “Supervised learning with spiking neural networks,” Proceedings of...

	Theta Neuron Networks: Robustness to Noise in Embedded Applications
	Sam McKennoch, Preethi Sundaradevan, and Linda G. Bushnell
	TABLE 3 : Experimental Minimum Distance from Obstacle for Different Angles of Arrival

