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Abstract

The main contribution of this paper is the derivation of a steepest gradient descent learning rule for
a multi-layer network of theta neurons; a one-dimensional non-linear neuron model. Central to our
model is the assumption that the intrinsic neuron dynamics are sufficient to achieve consistent time
coding, with no need to involve the precise shape of post-synaptic currents; this assumption departs
from other related models such as SpikeProp and Tempotron learning. Our results clearly show that
it is possible to perform complex computations by applying supervised learning techniques to the
spike times and time response properties of non-linear integrate and fire neurons. Networks trained
with our multi-layer training rule are shown to have similargeneralization abilities for spike latency
pattern classification as Tempotron learning. The rule is also able to train networks to perform
complex regression tasks that neither SpikeProp or Tempotron learning appear to be capable of.

1 Introduction

Recent neuroscience research has shown that substantial information about stimuli is contained in the timing of action
potentials. Examples include echolocation in bats, changes in insect flight patterns, visual stimuli recognition and
monkey reaction time in which it appears that only a small number of spikes is involved in the computation (Thorpe,
Fize, & Marlot, 1996; Rieke, Warland, Steveninck, & Bialek,1999). Other experiments have shown that spike timing is
important for hyperacuity, in which the signal to noise ratio of stimuli and output spikes allows for a greater resolution
than at first seems possible. For example, weakly electric fish can respond to signal changes from other fish on the
order of 100 nanoseconds (Carr, Heiligenberg, & Rose, 1986).

Computer simulations have shown that spiking neurons have computational advantages over rate coded neurons
(Maass, 1996b), that they are able to approximate complicated mathematical functions (Iannella & Kindermann, 2005)
and that they can generate complex periodic spike patterns (Memmesheimer & Timme, 2006). Due to the temporal
coding inherent to spiking neuron networks, they are especially useful for tasks with a temporal component such as
speech recognition (Alnajjar & Murase, 2005) or the controlof artificial neuroprosthetics (Popović & Sinkjr, 2000).

Previous attempts at training spiking neural networks haveused a linear summation of post-synaptic potentials (PSP)
at the soma, combined with gradient-based supervised learning rules (S. M. Bohte, 2003; Gütig & Sompolinsky, 2006)
or more biologically realistic spike-timing-dependent plasticity learning rules (Legenstein, Naeger, & Maass, 2005).
For example, SpikeProp (S. M. Bohte, 2003) works by linearizing the voltage at output spike times, in order to prevent
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discontinuities. A number of extensions to SpikeProp have appeared over the years, including networks of spiking
neurons that produce multiple output spikes (Booij & Nguyen, 2005), and reducing training times (McKennoch, Lui,
& Bushnell, 2006; Schrauwen & Van Campenhout, 2004; Xin & Embrechts, 2001). In the case of the Tempotron algo-
rithm (Gütig & Sompolinsky, 2006), the learning rule attempts to minimize the amount by which the maximum neuron
potential for incorrectly classified patterns deviates from the firing threshold. Tempotrons have been demonstrated on
binary classification tasks, which are only a small subset oftypical learning problems. Classification is determined by
either the presence or absence of an output spike, a spike coding that is not readily extendable to non-binary classifica-
tion tasks. According to Gütig and Sompolinsky (2006), theTempotron is also expected to have degraded performance
at classification tasks where the input spike dynamics existat multiple scales.

In these models, the shape of the post-synaptic potential (PSP) is of critical importance to the training algorithm (in
Tempotron, the time of maximum neuron potential is directlydependent on the PSP shape; in Spikeprop, the PSP
shape determines when the threshold will be crossed). This shape is dictated by a simple first-order linear differential
equation along with a voltage reset rule for when the spikingthreshold is crossed, which together are known as the
linear integrate and fire (LIF) model.

A clear advantage of first order dynamics is that it makes the derivation of a learning rule simpler, because the con-
tribution of a spike does not depend on the internal state of the post-synaptic neuron. The post-synaptic and somatic
membrane potentials are written as explicit functions of time, thus abstracting away from internal neural dynamics.
Hence, the potential at the soma is a weighted sum of PSPs, andthe contribution of a PSP to the sum is not dependent
on the internal state of the neuron when this PSP arrives.

However, this approach moves the computational burden fromthe soma to the synapses. Indeed, the PSPs computed
at these synapses must be made to interact with each other in the precise way required for desired output spike times.
In (S. Bohte, Kok, & La Poutré, 2000), the authors require the use of multiple delay connections between each neuron
pair in order to allow for different interactions between the weighted PSPs. For the XOR problem, SpikeProp requires
about 16 connections between each neuron pair, each with a different delay. The addition of these extra parameters
adds complexity to the learning problem. More crucially, the interaction between PSPs must take place on a small time
scale, that is limited by the size of the rising segment of thePSPs (Maass, 1996a). The difficulties faced by LIF-based
networks suggest that something important has been lost in the simplification. Some authors have argued that the LIF
model should be avoided at all cost (Dayan & Abbott, 2001; Florian, 2003; Izhikevich, 2004), because assumptions
such as a linear approximation for the overall membrane current and a simplified action potential description are too
simple to reflect real neuron dynamics.

In order to increase biological realism, the LIF model used by SpikeProp and Tempotron learning, also called the
simplified spike response model (SRM0) (Gerstner & Kistler, 2002), can be made into the full SRM by adding de-
pendencies on the time since the last output spike was produced into the response kernels (Gerstner & Kistler, 2002).
As was the case with SRM0, the full SRM does not have internal state variables. Instead, voltage is still an explicit
function of time, which in principle would make it possible to extend the approach used in SpikeProp or Tempotron.
However, the mathematical analysis is much more difficult inthat case, and a learning rule adapted to the SRM has
yet to be derived.

Another way of matching more closely the neural responses isto introduce more realistic differential equations in the
description of the neuronal dynamics (Feng, 2001; Izhikevich, 2004). Perhaps the most realistic conductance-based
dynamical neuron model is the Hodgkin-Huxley (HH) model. Parameters in the HH model were derived empirically
in part, and thus exhibit good biophysical grounding. The model consists of four interdependent differential equations
that model the membrane potential and gating variables. Given that there are four state variables, the dynamics of the
HH model are not entirely amenable to analysis. A common simplification is to assume that certain gating variables
have very fast time constants, and thus can be approximated by their steady-state values. This simplification reduces
the model to a membrane potential variable and a recovery variable that can then be analyzed using phase plane
analysis. Two-dimensional biophysically grounded modelsinclude the FitzHugh-Nagumo and Morris-Lecar models
(Gerstner & Kistler, 2002). The Izhikevich simple model of choice is also two dimensional and is designed to capture
a full range of neuron dynamics at the expense of reduced biophysical grounding (Izhikevich, 2006). Even with the
reduction to two state variables, the neuron model is complex enough to make certain types of analysis very difficult
if not prohibitive. However, rather than return to the LIF orSRM0 models, Izhikevich argues that quadratic integrate
and fire (QIF) neurons should be used instead (Izhikevich, 2004); they are nearly as computationally efficient, but
have additional important dynamic properties, such as spike latency, bi-stability of resting and tonic spiking modes,
and activity dependent thresholding. QIF neurons also havea frequency response that matches biological observations
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better than the LIF neuron (Brunel & Latham, 2003). By a simple transformation, the QIF can be mapped to the theta
neuron model, a non-linear phase model.

Non-linear models such as the QIF have the important property that their response to an incoming synaptic current
is not constant across time, but changes with the internal state of the neuron. In (Voegtlin, 2007), it was proposed
that time coding should be adapted to this property. In this proposal, spikes arriving at different times will trigger
different responses, and this precisely attributes different meaning to different spike times. Thus, the dynamic response
properties of neurons are essential and must be present in the neuron model. This cannot be achieved with the LIF
model. However, the relatively simple (one-dimensional) theta model has non-linearities that allow for modeling
variable response properties. The cyclic nature of the theta neuron phase model also allows for a continuous reset
(as opposed to the quadratic model), thus allowing for derivative based calculations without any sort of linearization
assumptions. This model was chosen for the derivation of a gradient-based learning rule (Voegtlin, 2007). The learning
rule was later extended to a robotic application where the activity dependent thresholding property is used as a noise
filter (McKennoch, Sundaradevan, & Bushnell, 2007). However, the method by Voegtlin (2007) was developed for a
single-layer of neurons only, which is not sufficient to approximate complex functions. In addition, it made certain
assumptions about the gradient that prevent training in many cases.

In this paper we develop a multi-layer gradient descent learning rule that is based on the theta neuron model dynamics,
and that can perform the same kind of tasks as SpikeProp or Tempotron. In our model, computations do not rely on
the shape of post-synaptic currents but rather on the intrinsic neuron dynamics. Thus, in the derivation of our learning
rule, we greatly simplify the shape of synaptic currents. Weare not claiming that synaptic time constants do not play
a role in natural systems. For example, synaptic time constants have an effect on the period of oscillations in coupled
networks (Marinazzo, Kappen, & Gielen, 2007; Börgers & Kopell, 2003). However, our hypothesis is that they are
not essential to time coding.

Essential for this learning rule is the development of an analytical event-driven framework for simulating theta neurons.
Event-driven methods use the exact or analytical solution to the neuron’s dynamics. The state trajectory of spiking
neurons is determined by the intrinsic neuron dynamics and the synaptic inputs. When the synaptic input spikes are
relatively sparse, it is more efficient to view the neuron as ahybrid system having both time-driven state changes as
driven by the intrinsic dynamics and asynchronous event-driven state changes as driven by synaptic inputs (Cassandras
& Lafortune, 2006). If an analytic solution exists for the time-driven state changes we need only separately calculate
the event-driven changes of state when an input is received and then use the analytical solutions to the dynamics of the
neuron to project the state to the next input spike time.

Additionally, many of the more complex neuron models do not have a closed form analytic solution for the state
variables, thus numeric integration is unavoidable. Numerical integration is sensitive to an artificially chosen time-
step. If the time step is too large, the firing results may be inaccurate. This inaccuracy is increased as the magnitude
of the synaptic efficiency parameters increases. If the timestep is too small, simulations will take an unreasonable
amount of time to complete. Event-driven methods have been developed for the LIF neuron (Mattia & Giudice, 2000),
and more recently for the QIF neuron as well (Tonnelier, Belmabrouk, & Martinez, 2007). The development of this
event-driven framework and the accompanying learning ruleconstitute the novel work in this paper and together are
used to perform complex computations using only the intrinsic dynamics of non-linear neuron models.

The paper is organized as follows. In Section 2 we present thetheta neuron model and its properties. In Section 3 we
derive a learning rule that can be applied to both the output and hidden layer of a multi-layer theta neuron network.
Section 4 describes our event-driven simulation framework. In Section 5 we verify the new learning rule through a
number of simulation experiments. We include an analysis oflearning rule performance using simple inverter and
delayer data sets and replicate the spike latency pattern classification experiment performed with Tempotron learning
in (Gütig & Sompolinsky, 2006). Next we train a multi-layertheta neuron network to learn a number of standard
machine learning classification and regression problems. Comparisons are made to similar results produced using
SpikeProp. Experiments are also performed to demonstrate the sensitivity to three important network parameters.
Section 6 gives conclusions and future work.

2 Theta Neuron Model

In this section we present the theta neuron model, the neuronmodel around which our learning rule is derived. The
theta neuron model is a canonical model, meaning that it is useful for capturing and generalizing the relevant dynamics
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of a class of models. More specifically, the theta neuron model is canonical in the sense that any Type I neuron close to
its bifurcation point (of type saddle-node on invariant circle (SNIC) since this is a Type I neuron), can be mapped to the
theta neuron model. In Type I neurons, the output spike frequency increases smoothly from zero as the input current
is increased. This type of neuron model is well suited for modeling cortical excitatory pyramidal neurons (Izhikevich,
2006).

As with all canonical models, the theta neuron model is formed from a piece-wise continuous change of variables
from other neuron models. In the case of the QIF neuron model,if we perform the following change of variables from
potential,u, to phase,θ,

u (t) = tan

(

θ (t)

2

)

(2.0.1)

we arrive at the canonical theta neuron model (G. B. Ermentrout & Kopell, 1986). The theta neuron model produces
an output spike when the phase passesπ. This change of variables indicates that we are consideringthe case where
the quadratic model spike magnitude goes to infinity (in finite time), corresponding to a phase ofπ. The phase evolves
towardsπ in the absence of input spikes once the spiking threshold (θ+

FP ) has been passed.

The theta neuron model has been used in a number of experiments such as synaptically generating traveling waves
(Osan & Ermentrout, 2001) and developing spike train statistics in the presence of white gaussian noise (Lindner,
Longtin, & Bulsara, 2003). Theta neurons represent an excellent trade-off between model complexity and analytical
tractability. Being a one-dimensional model, they cannot model complex neuron dynamics such as bursting, however
their dynamics can be viewed quite simply on a phase circle rather than resorting to full phase plane analysis for 2-D
models. The quadratic and the theta neuron model are among the most simple models that are excitable, which means
that for small perturbations from the neuron’s resting equilibrium, these perturbations may become greatly amplified
before the neuron returns to rest. Spikes may be cancelled here as well. Recovery is implicit in the cyclical nature of
the theta neuron model, eliminating any need for a separate recovery state variable.

The trajectory of the phase in a theta neuron is described by:

τ
dθ

dt
= (1 − cos θ) + αI (t) (1 + cos θ) (2.0.2)

whereτ is the neuron phase time constant;α is a scaling constant; andI(t) is the input current that drives the dynamics.
As was done in (Lim & Kim, 2007),τ is set to 1 ms in to create a correspondence between this modeland real spikes
which have widths on the order of milliseconds. As previously stated, we focus on using the neuron dynamics to
support complex calculations. Because we are assuming thatsynaptic time constants are non-essential, we are able to
treat our synaptic current inputs as instantaneous shock inputs modeled by Dirac delta functions. In this way, equation
(2.0.2) remains the only equation of state that we need to keep track of.

Synaptic currents depolarize or hyperpolarize the membrane potential, and thereby increase or decrease the phase,
depending on the sign of the synaptic efficiency. The total input current,I(t) is defined as the sum of a baseline
current,Io, plus the sum ofJ synaptic impulse inputs at timestj with size modulated by weightswj :

I (t) = Io +

J
∑

j=1

wjδ (t − tj) (2.0.3)

WhenIo > 0 a limit cycle forms, which causes spikes to fire periodicallyas a function ofIo. As Io approaches zero,
the frequency also approaches zero, which is in effect the definition of Type I neural excitability. WhenIo < 0 two
fixed points can be found by setting (2.0.2) equal to zero and solving for θ. One fixed point is a saddle point (θ+

FP ),
and the other is a stable fixed point (θ−FP ). The neuron phase (directly mappable to the membrane potential) moves
around its phase circle toward the stable fixed point and awayfrom the saddle point. When the phase crossesπ, the
neuron is said to have fired. In Figure 1, the unforced response of the neuron is plotted as a phase circle, and is broken
up into three operating regions for the case whereIo < 0. The neuron phase right before thejth input spike arrives is
defined asθ−j , while the phase right after this input spike is defined asθ+

j . Because synaptic currents are modeled as
impulses,
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Figure 1:Theta Neuron Phase Circle.The theta neuron phase circle is shown for the case where the baseline current
Io < 0. When the phase passesπ the neuron produces an output spike. In the spiking region, the neuron will fire after
some period of time. In the quiescent region, the phase will decay back toθ−FP unless enough excitatory input spikes
push the phase into the spiking region. In the refractory region the phase is recovering from a previous output spike,
thereby making it more difficult to immediately produce another output spike. This type of refractoriness is relative
(rather than absolute in which immediately producing another output spike is impossible).

θ+
j = 2 atan

(

αwj + tan

(

θ−j
2

))

(2.0.4)

which follows from equations (2.0.1), (2.0.2) and (2.0.3).As in (Voegtlin, 2007), the remaining time until the next
output spike as a function of the neuron phase is:

F (t) =

π
∫

θ(t)

dθ

(1 − cos θ) + αI (t) (1 + cos θ)
= F |πθ(t)

If there are input spikes,F is discontinuous and can be broken up into continuous pieces:

F (ti) =
J−1
∑

j=i

θ
−

j+1
∫

θ
+
j

dθ

(1 − cos θ) + αIo (1 + cos θ)
=

J−1
∑

j=i

F |
θ
−

j+1

θ
+
j

whereθ−J = π. The input spike times are ordered, thust2 > t1, etc.

Theta neurons exhibit the interesting properties of spike latency and activity-dependent thresholding, both of which
do not exist in the LIF model. Spike latency refers to the separation of the time between when the phase exceeds
the spiking threshold (θ > θ+

FP ) and when an output spike is generated (θ = π). This separation allows for further
incoming input spikes to modulate or even cancel the output spike. Activity-dependent thresholding means that a
spike’s effect on the phase depends on the internal neuron state. This state is determined by the magnitude and timings
of input spikes already received as well as the current spikeas shown in Figure 2.

A strong benefit of activity-dependent thresholding in our model is the long time scale over which computations can
take place. In the SpikeProp model, the length of the rising segment of the PSP limits the range of computation. For
example, in a two input dataset, for the SpikeProp model if the inputs are spaced farther apart in time than a few
synaptic time constants, then the effects of the input spikes will be independent of one another, greatly reducing the
computational possibilities. In contrast, our practical range is the section of the response curve where the response is
not constant, which as shown in Figure 2 is on the order of tensof milliseconds. Unlike the SpikeProp and Tempotron
models, these long time scales also allow for computations where input spike dynamics exist at multiple scales.
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Figure 2:Theta Neuron Response Curves.The curves show the change in output firing time (∆to) when there is a
single input spike (atti) compared to no input spikes at all. The baseline current,Io = −0.005. Curves are shown for
different positive values of synaptic weights. In all cases, the firing time is more effected when the input spike occurs
earlier. Given that the initial phase used here is 0.0001 above θ+

FP , if no input spikes occurred the neuron would fire
at a baseline firing time,tBL = 56.2 ms. Of importance is the time range over which the response isnot constant,
meaning the range over which computation is possible. Depending on the weight, this time range is nearly the entire
span of time from 0 ms untiltBL.

In addition, activity-dependent thresholding eliminatesthe need for delays. In the SpikeProp learning methodology,
each synapse must be expanded to a group of synapses each witha different delay such that there is an appropriate
range of delays specific to the training data set. These delays may also be trained using the method in (Schrauwen &
Van Campenhout, 2004). Delays are needed to cause the increases in potential from each input spike to interact in the
way needed to produce the desired output spike times becausean input spike of a given magnitude will change the
neuron potential by an equal amount regardless of when the input spike occurs. Recall, with the original SpikeProp, 16
separate connections between neuron pairs were needed, each with different delays, in order to learn the simple binary
XOR problem. In the theta model the effect of the delay is incorporated directly into the intrinsic neuron dynamics,
thus eliminating the need for delay training or multiple static delay connections.

3 Theta Neuron BackProp Training Rule

This section presents the development of a steepest descenterror back-propagation learning rule for theta neuron
networks. The method described refines our recently developed gradient based method for training the output firing
times of a single layer of theta neurons (Voegtlin, 2007). The previous method only applied to a single layer of theta
neurons and also made certain simplifications in the error gradient calculation that under many conditions make it
a non-ideal approximator to the exact error gradient. The learning rule derived applies to neurons that receive and
produce one spike per synapse, although the training rule could be generalized for multi-spike domains.

The network topology is a fully-connected multi-layer feedforward network. We use the following notation conven-
tion: I, H andO, the set of all input, hidden and output layer neuron indicesrespectively. The sizes of these layers are
|I| = M , |H| = N and|O| = P . The indicesj andk are used as generic neuron indices. The indicesm, n andp are
used for referring to neurons on the input, hidden and outputlayers respectively. The desired firing time of an output
neuron istp, while the actual firing time istp. Neurons in a layer are indexed by the order of the output spikes that
they produce. Hence for the hidden neuron which produces thefirst output spike,n=1. This choice of notation may
cause the indexing to change from one input pattern to the next, but this change is not problematic. Figure 3 shows a
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Figure 3: Multi-Layer Computation. This raster plot shows the spikes being propagated by all theneurons in a
network trained for calculating two different input patterns of the cosine function. There is a reference input at 1 ms,
and two inputs at 8 ms and 2.23 ms respectively representing cosine input values. Each grayscale pixel represents
a spike on a specific synaptic connection. There are two inputspikes, but because there are 8 hidden neurons (not
all of which fire in pattern 2), the spikes get modulated differently coming into each hidden neuron. The grayscale
pixel coloring refers to the synaptic weight with darker colors being more excitatory and lighter colors being more
inhibitory.

spatio-temporal raster plot of the spikes propagating through a network trained to calculate the cosine function (See
Section 5).

Our learning rule is based on the steepest gradient descent method. Steepest gradient descent learning algorithms
are often the basis of more complex learning rules (RProp andQuickProp for example (Reed & Marks, 1998)). The
learning rule developed here is shown to be structurally similar to the classic Error BackProp used in rate coded
neurons, but is adapted to the non-linear spiking theta neuron model. For example, because the effect of an input spike
is voltage dependent, the calculation of the error backpropagation terms becomes recursive. The derivatives needed
for gradient descent are based on event-driven simulation techniques which are developed in Section 4. This technique
involving the analytical solution of the remaining time function is much more efficient than time based techniques
when the discontinuous changes to the neuron phase are relatively sparse.1

3.1 Output Layer Weight Training

The following derivation describes how weights affiliated with connections between hidden and output neurons should
be adjusted in order to achieve desired firing times. The error for a single input pattern is defined as a sum of squared
errors (SSE):

E =
1

2

∑

(

tp − tp
)2

(3.1.1)

1The gradient equations derived in this section were all verified by comparing to a numerically calculated gradient over different
parameter combinations. In all cases, the difference between the numerical and calculated gradient was negligible, and as the
numerical step size decreased, the difference decreased aswell.
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As with any gradient steepest descent learning rule, the weights are incrementally adjusted in the opposite direction of
the error gradient. In batch learning, all input patterns are presented before the weights are changed (by the summation
of the changes required by each input pattern), while for online learning weights are changed after the presentation of
each input pattern. In either case, one epoch is defined as thepresentation of all input patterns once. Following the
notation of traditional error backpropagation in rate coded neural networks, the gradient calculation may be broken
up into terms found by moving forward through the network (y) and terms found by backpropagating the error back
through the network (δ). For the output layer:

∆wnp = −ηw

∂E

∂wnp

= −ηw

∂E

∂tp

∂tp
∂wnp

= −ηwδpynp (3.1.2)

whereηw is the synaptic efficiency learning rate. The gradient term∂E/∂wnp is found by taking derivatives on the
event-driven equations found in Section 4. The functional equivalents are reproduced here:

E = f1

(

tp, tp
)

, tp = f2

(

t
N̂

, θ+

N̂
, αIo

)

,

θ+
j = f3

(

θ−j , wj , α
)

, θ−j = f4

(

θ+
j−1, tj − tj−1, αIo

)
(3.1.3)

Let N̂ be the index for the final input spike before an output spike isreceived. Input spikes which occur after the
output spike have no effect. Expanding (3.1.2):

∆wnp =
∂E

∂tp

∂tp

∂θ+

N̂p

∂θ+

N̂p

∂θ−
N̂p

∂θ−
N̂p

∂θ+

(N̂−1)p

· · ·
∂θ−(n+1)p

∂θ+
np

∂θ+
np

∂wnp

This chain rule expansion relates a weight’s effect on the final error by stepping through all the functional dependen-
cies. The input spike from neuronn will alter the effect that all subsequent spikes (from neuronsn + 1 throughN̂ )
have on the phase of neuronp and therefore the output spike time,tp, as well. The first and second terms are easily
calculated:

∂E
∂tp

= tp − tp,
∂tp

∂θ
+

N̂p

= −1
“

1−cos θ
+

N̂p

”

+αIo

“

1+cos θ
+

N̂p

”

The last term and terms of the type∂θ+
jp

/

∂θ−jp are calculated by differentiating (2.0.4):

∂θ+
np

∂wnp
= α

(

1 + cos θ+
np

)

,
∂θ

+
jp

∂θ
−

jp

=
(1+cos θ

+
jp)

(1+cos θ
−

jp)

Terms of the type∂θ−jp

/

∂θ+
(j−1)p come from taking the derivative off4 in (3.1.3) and applying a number of standard

identities from trigonometry:

∂θ−jp

∂θ+
(j−1)p

=

(

1 − cos θ−jp

)

+ αIo

(

1 + cos θ−jp

)

(

1 − cos θ+
(j−1)p

)

+ αIo

(

1 + cos θ+
(j−1)p

)

Combining the previous two equations:

∂θ+
jp

∂θ+
(j−1)p

=

(

tan2

(

θ
−

jp

2

)

+ αIo

)

(

1 + cos θ+
jp

)

(

1 − cos θ+
(j−1)p

)

+ αIo

(

1 + cos θ+
(j−1)p

) (3.1.4)
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Putting the results together reduces to the following learning rule.

Output Layer Learning Rule

∆wnp = −ηwδpynp

δp =
(

tp − tp
)

ynp =
−α

(

1 + cos θ+
np

)

(

1 − cos θ+

N̂p

)

+ αIo

(

1 + cos θ+

N̂p

)

N̂
∏

j=n+1

∂θ+
jp

∂θ+
(j−1)p

(3.1.5)

3.2 Hidden Layer Weight Training

A portion of the analysis of the hidden layer is similar to theoutput layer analysis. First consider:

∆wmn = −ηw

∂E

∂wmn

= −ηw

∂E

∂tn

∂tn
∂wmn

= −ηwδnymn

The analysis for the last term,∂tn/∂wmn, is identical to that from the output layer arriving at:

∂θ+
jn

∂θ+
(j−1)n

=

(

tan2

(

θ
−

jn

2

)

+ αIo

)

(

1 + cos θ+
jn

)

(

1 − cos θ+
(j−1)n

)

+ αIo

(

1 + cos θ+
(j−1)n

)

ymn =
−α (1 + cos θ+

mn)
(

1 − cos θ+

M̂n

)

+ αIo

(

1 + cos θ+

M̂n

)

M̂
∏

j=m+1

∂θ+
jn

∂θ+
(j−1)n

Now back to the first term:

δn =
∂E

∂tn
=

∑

tp > tn

∂E

∂tp

∂tp
∂tn

The second term in this summation is the most complicated term in this derivation. By taking into account the
functional dependencies described in (3.1.3):

∂tp
∂tn

=
∂tp

∂θ+

N̂p

∂θ+

N̂p

∂θ−
N̂p





n+2
∏

k=N̂

∂θ−kp

∂θ+
(k−1)p

∂θ+
(k−1)p

∂θ−(k−1)p





dθ−(n+1)p

dtn
(3.2.1)

Further expanding the last term:

dθ−(n+1)p

dtn
=

(

∂θ−(n+1)p

∂tn
+

∂θ−(n+1)p

∂θ+
np

∂θ+
np

∂θ−np

∂θ−np

∂tn

)

There are two terms inside the parentheses becauseθ−(n+1)p is a function of the change in time since the last input
spike, sotn appears twice. Much of equation (3.2.1) has already been calculated byynp. Thus to avoid redundant
calculations, it is helpful to rewrite this equation in termsynp and the remainder,γnp:
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∂tp
∂tn

= ynpγnp

where:

γnp =
dθ−(n+1)p

dtn
/

(

∂θ−(n+1)p

∂θ+
np

∂θ+
np

∂wnp

)

Putting the results together reduces to the following learning rule.

Hidden Layer Learning Rule

∆wmn = −ηwδnymn

δn =
∑

tp>tn

δpynpγnp

ymn =
−α (1 + cos θ+

mn)
(

1 − cos θ+

M̂n

)

+ αIo

(

1 + cos θ+

M̂n

)

M̂
∏

j=m+1

∂θ+
jn

∂θ+
(j−1)n

γnp = −wnp

(

αwnp + 2 tan

(

θ−np

2

))

(3.2.2)

With this result, along with the output layer learning rule in Section 3.1, training of multi-layer theta neuron networks
is now possible. These equations also apply regardless of whether the baseline current is positive or negative.

3.3 Analogy to Rate Coded Neural Networks

The learning rule results developed in this section are analogous to the backprop-algorithm derivation for rate coded
models. The variabley is calculated by moving forward through the network,δ is calculated by then propagating the
errors back through the network. The variableδ is specific to a neuron, regardless of which input we are examining. In
rate coded models,y is also specific, but for our system the interaction between the transfer function and input timings
do not allow this effect to be separated out, and soy is specifically a measure of the effect of the weight between
neuronj and neuronk on the output spike time of neuronk.

Recall thatyjk indicates the value ofy between neuronsj andk, wherej andk index the neuron firing order in two
different layers. Asj increases (meaning we are examining neurons whose output spike times occur later and later),
yjk will tend towards zero. Generally, each subsequent input has less and less of an effect on the phase. The last parts
of equations (3.1.5) and (3.2.2) multiply these effects on the phase together, forcingyjk towards zero. This is similar
to sigmoidal saturation in terms of rate coded models. The variableyjk will actually reach zero when enough input
spikes have preceded it so that subsequent input spikes arrive after neuronk has already fired. Since the input arrives
after the output, it has no effect. Interestingly,yjk may also be viewed recursively:

y(j+1)k =

(

αwjk + tan

(

θ
−

jk

2

))2

+ αIo

tan2

(

θ
−

(j+1)k

2

)

+ αIo

yjk

Recursiveness makes intuitive sense here since the theta neuron incorporates the activity-dependent threshold property
that states that the effect of each input spike is based on theprevious input history.
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4 Event-Driven Simulation

In this section a collection of equations are derived that enable the dynamics of the theta neuron to be simulated using
an event-driven (rather than numerical) methodology. The existence of these event-driven equations make possible the
derivation of exact expressions for gradient terms, without resorting to linearization or other simplifying assumptions
as was presented in Section 3. The derivation is based on the theta neuron’s remaining time function. The remaining
time function describes the amount of time remaining until an output spike is produced as a function of input current
and phase. This function was previously shown to have an analytical solution in (B. Ermentrout, 1996). However, the
authors of that work were more interested in aspects of neuron synchronization and thus did not develop the analytic
solution into one that handles input spikes, removes imaginary numbers from the calculation, or which accounts for
both positive and negative baseline currents. The method employed here is analogous to the event-driven simulation
method for impulse inputs in QIF neurons derived in (Tonnelier et al., 2007). Because our method here is applied to
theta neurons rather than quadratic neurons, it has the potential to handle multiple input and output spikes in a more
mathematically concise way. The post-firing phase reset in quadratic neurons is handled by a rule, outside of the
differential equation that describes the neuron dynamics.However, in theta neurons, because of the cyclic nature of
trigonometric functions, after passingπ, the value of the next pre-synaptic input phase automatically is reduced by2π,
placing it in the refractory region and ready to handle more input spikes.

The phase of the theta neuron evolves smoothly according to (2.0.2) except when input spikes occur, thus we would
like to calculate the neuron phase at an input spike time as a function of previous spike times and phase at those spike
times. The integrated remaining time function for when the baseline current is negative is:

F = −
1

β
atanh

(

tan
(

θ
2

)

β

)

whereβ =
√

|αIo|, a constant which appears often in our calculations. From this equation we can derive the relation-
ship between the phase and time for a baseline trajectory. The index of thejth connection to neuronk is j, given that
the inputs are sorted by their firing times.

tj = t(j−1) + F
(

θ−jk

)

− F
(

θ+
(j−1)k

)

θ−jk = 2 atan
[

β tanh
(

−β
(

tj − t(j−1) + F
(

θ+
(j−1)k

)))]

Using a number of trigonometric identities as well as (2.0.4) we have the following two equations that can be used to
evolve the neuron phase according to received input spikes.

θ−jk = 2 atan

[

β(c1jk
+c2jk)

1+c1jk
c2jk

]

, θ+
jk = 2 atan

[

αwjk +
β(c1jk

+c2jk)
1+c1jk

c2jk

]

wherec1jk
= tan

(

θ+
(j−1)k

/

2
)/

β andc2jk
= tanh

(

−β
(

tj − t(j−1)

))

. If the neuron fires during normal movement

around the phase trajectory (as opposed to on an input spike)then the output spike time (tk) after the last input spike,
tN has occurred is:

tk = tN +
1

β
atanh

(

1

c1(N+1)k

)

(4.0.1)

The baseline firing time,tBL, that is the neuron firing time in the absence of input spikes,can be determined from
(4.0.1) under the assumption that the neuron phase is in the spiking region.

tBL =
1

β
atanh

(

β

tan
(

θ0

2

)

)

(4.0.2)
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whereθ0 is the initial phase. Throughout this paper we setθ0 to a small amount (0.0001) above the positive fixed
point. Time zero then is defined at the point when all the thetaneurons in the network have their phase set toθ0 and
are then left to evolve according to their dynamics. Additionally, each neuron is assigned a reference input which is
defined to come at a fixed time before all the other input pattern spikes. This reference input effectively allows all the
neurons to have different initial phases at this reference time (since the weights connecting the neurons to the reference
inputs will vary upon training). WhenIo is positive, the equations are slightly modified:

F =
1

β
atan

(

tan
(

θ
2

)

β

)

θ−jk = 2 atan
[

β tan
(

β
(

tj − t(j−1) + F
(

θ+
(j−1)k

)))]

Again, using a number of trigonometric identities we have:

θ−jk = 2 atan

[

β(c1jk
+c2jk)

1−c1jk
c2jk

]

, θ+
jk = 2 atan

[

αwjk +
β(c1jk

+c2jk)
1−c1jk

c2jk

]

The equation forc1jk
is unchanged from whenIo < 0, but nowc2jk

= tan
(

β
(

tj − t(j−1)

))

. The output spike time
after the last input spike,tN has occured is:

tk = tN +
1

β
atan

(

1

c1(N+1)k

)

Using a simple dataset that emulates logical inversion as a test case (see Section 5.1 for more details on the dataset)
and a theta neuron network withIo=-0.005, an initial phase just above the positive fixed pointand 5 hidden neurons,
the event-driven simulation method takes about 240 ms for each output spike time calculation, while the numerical
integration method takes about 5 seconds. The event-drivencalculation has almost a factor of 50 improvement in
speed. This speed improvement holds under most testing conditions, and starts to gradually decrease only when the
number of hidden neurons is very large, or the number of inputspikes is large. Thus we can conclude that event-driven
simulation provides a valuable speed benefit under most normal operating conditions.

5 Experiments

In this section, we perform a series of experiments that use an in-house built Matlab graphical user interface which is
capable of simulating and training theta neuron networks and is available by contacting the authors. These experiments
use the training rules derived in Section 3 to examine different properties of theta neuron training and to compare the
results to other relevant experiments. The first experimentis a toy problem involving a single neuron with a single
input in order to demonstrate the basic properties of the learning rule. The second experiment involves a biologically
significant problem of learning to classify spike latency patterns and is compared to results obtained using Tempotron
learning.

Next, a number of more computationally intensive multi-layer machine learning problems are discussed. Results in
these cases are compared with SpikeProp and other Neuron-based learning methods. One regression problem we learn
is the cosine function. Because cosine is one of the basis functions for the Fourier series, being able to learn cosine is
a strong indicator of universal function approximation ability. Put another way, if we can learn a cosine of arbitrary
frequency and phase, then networks trained in this way couldbe placed side by side with the addition of another layer
to add the cosine outputs together into the approximated function. The addition of cosine terms requires that we be
able to train a network to perform linear addition, which wasdone successfully in other experiments that we ran and
that are not shown here.

Finally, we examine the sensitivity of theta neuron networks to network parameters. Overall, our experiments show
that the theta neuron networks trained with our rule performas well as or better than other comparable spiking neuron
training techniques and also show how training and network parameters can be chosen. For efficiency purposes, all of
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Table 1:Inverter & Delayer Training Results . A single neuron with one reference input was batch trained using the
inverter or delayer data set. The stopping cirteria was an MSE of 0.05 or 2500 epochs, whichever came first.ηw=2e-7
andIo=-0.005.DNC stands forDoes Not Convergeand indicates that either the output neuron stopped firing orthat
2500 epochs were reached and the error had become oscillatory. If the data set did not converge, smaller learning rates
were attempted to verify that the reason for not converging was not because of too high a learning rate.

METHOD INITIAL TRAINING EPOCHS
WEIGHTS Inverter Delayer

Method by Voegtlin (2007) 0.01 0.01 668 DNC
0.01 0.02 DNC DNC
-0.01 0.02 DNC DNC
0.02 0.01 524 DNC
0.02 -0.01 11 DNC

Proposed Method 0.01 0.01 684 114
0.01 0.02 819 20
-0.01 0.02 992 312
0.02 0.01 585 197
0.02 -0.01 8 290

the experiments use event-driven simulation for determining the impact each input spike has on each neuron’s phase
(see Section 4). The scaling parameter,α, is set to 1 throughout.

5.1 Simple Inverter & Delayer Training

In this section we seek to design an experiment which visually demonstrates our learning rule. The simplest possible
network is a single neuron with one input in addition to a reference input. Recall that the reference input receives a
spike at a fixed time regardless of the input pattern, in much the same way that the bias input works in rate coded
networks. This simple network has two parameters, the weight associated with the reference input and the weight
associated with the variable input. For a given input pattern it is possible to calculate the error in between the actual
and desired output spike times for different values of thesetwo parameters. Because we are using only two parameters,
the error surface may be viewed as a three dimensional plot. Using this error surface we can examine the trajectories
of the weight parameters as they are trained. Ideally, the learning method should minimize the error, so the trajectories
will move from the initial weight point to a value of the weights at which there is a minimum on the error surface.

Two such simple problems are the simple inverter and delayerproblems. The reference input time in each case is 1
ms, and the possible inputs times are 3 ms and 6 ms. For the inverter, the desired output times are 30 ms and 20 ms
respectively, while for the delayer, the desired output times are 20 ms and 30 ms. For the inverter, the final trained
weights that achieve this output spike time mapping are suchthat the reference input weight is negative, forcing the
phase into the quiescent region between the two fixed points.The second weight is positive which brings the phase
back above the positive fixed point, ensuring that the neuronwill eventually fire. Thus we are able to test that our
learning rule remains valid when the neuron phase is temporarily in the quiescent region.

If the theta neuron fires during the normal phase trajectory,the output spike time is determined exclusively by the final
input spike time and the final post-input spike phase according to equation (4.0.1). The method proposed by Voegtlin
(Voegtlin, 2007) derived an approximation to the error gradient based only on the input spike to which the weight is
associated. This method however creates a discontinuity inthe final gradient atθ+

np, a discontinuity that is not present
in the exact gradient. Table 1 compares training results on the inverter and delayer using different initial weight values
for the approximate method in (Voegtlin, 2007) and the method described in Section 3 which finds the exact gradient
analytically. Training with the approximate gradient method often fails to converge for the parameters shown. In cases
where convergence does take place, convergence times are similar to the method proposed here.

The error surface for both the inverter and the delayer, contains a downhill trough with a shallow slope on one side and
steep slope on the other, above which the neuron does not fire.In Figure 4 the MSE trajectory for the calculation using
the exact gradient method in this paper is identical to the numerically calculated exact gradient, while the gradient
approximation method from (Voegtlin, 2007) does not converge to the global minimum. Successful training of the
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NECO−09−07−610−Figure−4

Figure 4: Inverter Error Surface. Two MSE trajectories are shown using a single neuron with oneinput plus the
reference input. The white trajectory was calculated usingthe approximate gradient calculation method from (Voegtlin,
2007), while the black trajectory was calculated using the learning method proposed here. The trajectory using the
previous rule exhibits erratic behavior due to an artificialdiscontinuity that the gradient approximation rule produces,
while the method described in this work follows the numerically calculated gradient trajectory exactly and minimizes
the error as desired. The MSE in the top right of the graph is undefined since the neuron did not produce any output
spikes. The initial weights are represented by the black circle, and the global minimum is represented by the white
circle. White contour lines are provided as well.

inverter data set has verified that training is possible in the quiescent region. This result is expected since it is the same
differential equation that describes the neuron behavior for all regions.

5.2 Spike Latency Pattern Classification

In this section, tests on a single neuron are continued, but with a much more realistic test to determine the theta
neuron’s spatiotemporal classification and generalization abilities. In this case, the input is a vector. For each input
pattern a spike time for each synaptic connection is chosen at random and assigned one of two class memberships. The
learning of these classes is referred to as spike latency pattern classification. Spike latency codes have been shown to
play an important role in both retinal ganglion cells (Thorpe, Delorme, & Van Rullen, 2001) and the olfactory system
(Hopfield, 1995). As in (Gütig & Sompolinsky, 2006) the loadon the system,L, is defined as the number of input
patterns divided by the number of input synapses,M . Here we train a single neuron withM=500 andL = 1 to have
to 0% classification error. Classification error (CE) is the percentage of input patterns that are classified incorrectly.

Different output spike times are assigned to represent different classes. For an input pattern to be classified correctly, it
must produce an output spike that is closer to its class’ output spike than to any other class’ output spike. In (Gütig &
Sompolinsky, 2006), the presence or absence of an output spike determined the classification. This encoding scheme
could be approximated by the theta neuron. In theory, if the learning rate was arbitrarily small and the floating point
precision of the computer in use arbitrarily large, then thephase could be moved arbitrarily close to the positive fixed
point, and thus produce an output firing time of any positive real number, even approaching infinity. More practically
however, choosing very small learning rates makes learningproceed much slower than is necessary, and moving the
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phase arbitrarily close to the positive fixed point increases the likelihood that the phase will get pushed to the other
side of the positive fixed point, causing the output spike to be canceled. Thus we instead chose to use specific finite
desired output spike times for the two classes of input patterns.

The phase of some example patterns as well as the learned weight distribution is shown in Figure 5. When this
experiment was performed with a Tempotron, the authors looked at both training time and generalization error to
measure success. It is difficult to compare training times inour case because of the non-smoothness of the error
surface which requires modulation of the learning rate to obtain the fastest theta neuron network training time possible.
Empirical modifications of the learning rate during experiments not included in this paper have verified this statement
and suggest that this method would benefit from more complex gradient descent techniques such as momentum or the
Levenberg-Marquardt algorithm. However, as with all experiments in this section, we use only a constant learning rate
in order to provide the simplest comparison possible.

Even though it is difficult to compare training times, once training is complete (CE=0%) generalization error can
more easily be compared. Generalization error for this dataset is determined by looking at jitter. Jitter is some
amount of Gaussian noise added to the times of each input spike pattern in order to observe the effect on classification.
Classifying correctly in the presence of noise indicates that the network has generalized the input pattern since it is
able to classify correctly with similar inputs to the trained ones. Normally generalization is determined by examining
the network response to testing data which has not been previously used for training. For the spike latency data set
there is no explicit underlying function from which to generate the testing data since the training has been created in a
random way so we rely on jitter to examine generalization instead.

In Figure 6 we compare the jitter results for spike latency classification with that of the Tempotron. Our input spike
time range is 2 ms to 8 ms while our output spike times are 20 ms and 24 ms for the two pattern classes. The amount of
added jitter was normalized over the input spike range in order to produce a fair comparison between our method and
Tempotron learning. The results show that our proposed learning rule can reproduce the Tempotron training results
and with better generalization error. Our model can handle almost two orders of magnitude more noise while staying
within generalization errors of 10%. One possible explanation for this result is that the activity-dependent thresholding
property of theta neurons is acting to suppress the jitter similar to what was done in (McKennoch et al., 2007).

We also examined the case where training was allowed to continue past the point where 0% classification error was
achieved, in this case 7% longer. For low values of jitter, this network exhibited lower generalization error than
the previous theta neuron result. However, this network also showed some initial signs of memorization rather then
generalization, meaning that it was starting to become overtrained. This balancing of memorization and generalization
is common to standard rate coded neural networks and is to be expected in theta neurons as well.

In other spike latency experiments that were run with 5 or 10 input synapses, rather than 500, the load was varied in
order to determine the critical storage capacity (αc). The critical storage capacity is the maximum load at whichthe
network can still learn all the input patterns’ classes (Gütig & Sompolinsky, 2006; Li & Harris, 2004). Our estimated
value isαc = 2 for the theta neuron, equivalent to single-layer perceptrons and slightly less than that for the Tempotron
(whereαc ≈ 3). A different choice of parameters perhaps might increase the theta neuronαc, see for example the
effect of the output spike interval in the following section.

5.3 Machine Learning Classification Problems

Three classification problems or data sets were tested usingtheta neuron networks, the binary XOR problem, the
Fisher Iris data set and the Wisconsin Breast Cancer data set. These experiments are of increasing complexity. The
XOR problem is very simple and used to examine the choice of the number of hidden neurons as well as the desired
output spike times. The other two experiments are more complex with the results being compared to other related
neuron-based learning methods. In all cases satisfactory training results were achieved. Online learning was used
rather than batch learning as it proved much more successfulat avoiding local minima. MSE was measured relative
to the encoded desired output spike times and the actual output spike times. A small amount of normally distributed
noise was added to the initial weight value,wini on each synapse in order to avoid local minima created by symmetry.
Experimental parameters, including the spike time values that input and output spikes are mapped to, are given in
Table 2. These parameters were largely chosen empirically.However, the discussion that follows in this section as
well as Sections 5.4 and 5.5 develops a methodology for choosing spike mappings and other parameters.
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NECO−09−07−610−Figure−5a

(a)Complete Phase Plot.The output spikes for
all patterns shown fall on the desired side of the
class decision line (the vertical line marked with
’x’).
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NECO−09−07−610−Figure−5b

(b) Area of Phase Modulation. The period of
time during which input spikes arrive is shown.
The reference spike occurs at 1 ms. Class 1 pat-
terns spend more time above the above the pos-
itive fixed point, while class 2 patterns spend
more time below the positive fixed point thus
causing them to produce later output spikes as
desired.

Figure 5: Spike Latency Performance. The phase and weight distribution of a single theta neuron isshown in
response to four spike latency pattern. There are 500 input synapses. Input spikes arrive between 2 ms and 8 ms.
Patterns 1 and 2 belong to class 1 and have a desired output spike time of 20 ms, while patterns 3 and 4 belong to class
2 and have a desired output spike time of 24 ms.Io=-0.005, the initial weight value (wini) is 0.01 andηw=4.25e-11.
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(c) Learned Weight Distribution. The weights
form a normal distribution around zero with a
slight skew towards positive weights. The slight
positive skew ensures that output spikes will not
be canceled. The single outlier is the weight as-
sociated with the reference input. As the number
of inputs increases, the magnitude of the learned
weights decreases as each input spike needs to
effect the output spike time less and less.

Figure 5:Spike Latency Performance.(continued)
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Figure 6: Jitter Comparison to Tempotron. A single neuron is trained with the method proposed here and by the
method in (Gütig & Sompolinsky, 2006). The number of synapses and input patterns is 500 (α = 1). Io=-0.005
andwini = 0.01. For the theta neuron, training is stopped when classification error becomes zero. The theta neuron
is shown to be much less sensitive to higher levels of jitter indicating better generalizability than the Tempotron.
There is one pattern near the decision boundary (because classification error has just reached 0%) that is especially
sensitive to low levels of jitter. In fact, this one pattern is the only one that gets misclassified until the normalized jitter
reaches about7 · 10−3. Training the network 7% longer after 0% classification error has been reached delays the first
appearance of an error from a normalized jitter of3.5 · 10−7 to 1 · 10−3.
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Table 2:Machine Learning Classification Experiment Overview. This table contains parameters for the machine
learning classification experiments.

XOR Fisher Iris Wisconsin Breast Cancer
Inputs 0, 1 [0,79] [1, 10]
Input Spikes 3ms, 6ms [2ms, 8ms] [2ms, 8ms]
Output Spikes 20ms, 30ms [20ms, 30ms] [18ms, 28ms]
Outputs 0, 1 0, 1, 2 2, 4
Learning Rate 1e-6 1e-6 7e-8
Baseline Current -0.005 -0.005 -0.005
Initial Weight 0.01 0.01 0.01
Number Hidden Neurons 5 8 8
Online vs. Batch Online Online Online
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Figure 7: Hidden Neuron Analysis. This plot shows the effects of varying the number of hidden neurons,N , on
the XOR problem. The dataset is trained to 0% classification error with ηw=1e-6,Io=-0.005 andwini=0.01. AsN
increases, the computation time per epoch (the actual CPU time taken to perform the necessary calculations) also
increases as expected since the number of parameters is increasing. The number of epochs needed for training has
a minimum atN = 5, where there are neither too many nor not enough trainable parameters to perform the XOR
computation.

Our first machine learning experiment was performed on the simple binary XOR data set. XOR is a simple but
important problem in machine learning in part because the data pattern is not linearly separable. In the experiments
performed, all four data patterns are correctly classified when the MSE is at about 2, but further training allows better
separability and tolerance to noise. The number of hidden neurons,N , was varied in order to determine its optimal
value. This best value ofN is tied to the dataset complexity. Figure 7 shows the computation time and training epochs
asN is varied. To minimize the number of training epochs, we setN = 5. Using the parameters in Table 2, XOR is
trained to an MSE of 0.05 in 2524 epochs, and a classification error of zero in 240 epochs.

For the XOR problem, we also examined the effect of translating and dilating the desired output spike times in order
to examine its effect, and also determine if there is an optimal spike interval. The results are summarized in Table 3.
For translation of the output spike interval, earlier values result in quicker training times, up until of course the input
spike interval (3 to 6 ms here). Later output spike times require a smaller learning rate (and thus slower training) since
the phase is getting pushed closer to the positive fixed pointto achieve the slower time constant. For dilation, there
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Table 3:Effect of Output Spike Times on XOR Training. In this comparison of training results between different
output spike times for the XOR problem, a multi-layer theta neuron network with 5 hidden neurons,Io=-0.005 and
wini=0.01 was used in training to a Classification Error of 0%. Thehighest learning rate possible such that the system
remained stable was used in each case. To force the output spike times to occur later, it is necessary to push the phase
closer and closer to the positive fixed point. As a result, a smaller learning rate is required to ensure that the neuron do
not stop firing altogether.

TRANSLATION DILATION
DESIRED OUTPUT DESIRED OUTPUT

SPIKE TIMES EPOCHS SPIKE TIMES EPOCHS
6.1 16.1 140,ηw=8e-5 20, 22 200,ηw=1e-5
10, 20 210,ηw=3e-5 20, 26 200,ηw=6e-6
15, 25 240,ηw=5e-6 20, 28 540,ηw=4e-6
20 30 240,ηw=1e-6 20 30 240,ηw=1e-6
25, 35 310,ηw=3e-7 20, 32 240,ηw=1e-6
30, 40 1780,ηw=3e-8 20, 34 300,ηw=5e-7
35, 45 2900,ηw=7e-9 20, 40 360,ηw=2e-7
40, 50 >30000,ηw=2e-10 20, 45 1400,ηw=3e-8

is a dynamic equilibrium with later spike times harder to train, but more widely separable classes easier to classify.
Once the upper class becomes late enough, then the second effect dominates and training time begins to increase.
Thus the spike interval can be chosen without too much care aslong as the upper output spike time is kept as small
as possible. Regarding the learned weight distribution, aswas the case with the Tempotron experiment, the learned
weights have a normal distribution with a slight skew to positive weights. The spread of the distribution decreases as
the output spike range increases where smaller, more precise weights are needed to realize the desired input-output
relationship (and therefore a smaller learning rate as well). Although this discussion was specifically applied to XOR,
which is a classification problem, the same logic should apply to regression problems, in the sense that they are like a
classification problem with an infinite number of classes over a fixed range. Indeed, in Section 5.4, we shall show how
the choice of the spike interval relates to the dynamics of the neuron through its response curve.

Table 4 contains classification results on the Fisher Iris and Wisconsin Breast Cancer data sets for the proposed learning
rule in comparison to other neuron based methods. The FisherIris data set consists of four iris attributes such as petal
length and a single output that indicates which of three iristypes has been measured. The output classes for the Fisher
data set include both linearly and non-linearly separable data. There are 150 data patterns total, of which we used
100 for training data and the remaining 50 for testing data. The Wisconsin Breast Cancer data set was originally
developed by Dr. William Wolberg to study fine needle aspiration cytological diagnosis. This data set contains 699
training patterns, each of which has 9 attributes (such as cell nucleus area and symmetry) and a single output that
determines whether the tumor was malignant or benign (Wolberg & Mangasarian, 1990). We used 599 patterns for
our training data, and the remaining 100 for our testing data. Both datasets were obtained from the UCI Machine
Learning Repository (Asuncion & Newman, 2007). For both datasets, our learning method classifies much better than
the methods we compare it to, even achieving perfect classification for the Fisher Iris data set. These data sets are very
popular in the machine learning community. For example, a recent paper on Bayesian Classifiers acheived 94.87%
training accuracy (Kotsiantis & Pintelas, 2005) with the Fisher iris dataset and one on Support Vector Machines
achieved a 99.33 % training accuracy on the same dataset (Zhong & Fukushima, 2007). However, the most fair
comparison for our results is to other neuron-based learning methods, especially spiking ones.

5.4 Machine Learning Regression Problems

Regression problems are well-suited to neural networks dueto the networks’ ability to generalize functions by inter-
polating between training data points. In order to achieve avery small MSE, the training performed in this section
actually temporarily pushed the neuron phase into the refractory region below both fixed points. Additionally, some of
the hidden neurons occasionally failed to fire when presented with certain training data patterns. If the hidden neuron
fails to fire for all training patterns, then it is effectively pruned from the network and will have no impact on the
output spike time. However, if the hidden neuron fires for some training patterns and not others an additional degree
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Table 4:Classification Results (%). In this comparison of classification results between different training methods,
Io=-0.005,wini=0.01 andηw=1e-6 and 7e-8 for the Fisher Iris and Wisconsin Breast Cancer data sets respectively.
Results for SpikeProp and rate coded model Error Backpropagation A (BP A) are taken from (S. Bohte et al., 2000)
while results for Dynamic Synapse SNN are taken from (Belatreche et al., 2006). The network size used in BP A
is inflated to match that of SpikeProp. The network size in BP Bis reduced to the network size of the theta neuron
network, and thus has the same number of trainable weights. Default Matlab parameters for Backpropagation and
normalized inputs and outputs were used for training with BPB.

LEARNING NETWORK EPOCHS CLASSIFICATION
METHOD SIZE TRAIN TEST

Fisher Iris Dataset
SpikeProp 50x10x3 1000 97.4% 96.1%
Dynamic Synapse SNN 4x10x1 Unknown 96% 97.3%
BP A 50x10x3 2.6e6 98.2% 95.5%
BP B 4x8x1 1e5 98.0% 90.0%
Theta Neuron BP 4x8x1 1080 100% 98.0%

Wisconsin Breast
Cancer Dataset
SpikeProp 64x15x2 1500 97.6% 97.0%
Dynamic Synapse SNN 9x6x1 Unknown 97.2% 97.3%
BP A 64x15x2 9.2e6 98.1% 96.3%
BP B 9x8x1 1e5 97.2% 99.0%
Theta Neuron BP 9x8x1 3130 98.3% 99.0%

of freedom is produced, effectively creating a variable size hidden layer. One use of this variable size hidden layer was
shown in Figure 3. The network is able to create similar outputs for the cosine function in response to widely-separated
inputs by having non-firing hidden neurons (in the second pattern).

As was the case with the classification problems, the problemsets are not presented in terms of spike times thus a
mapping must be performed to transform inputs and outputs toand from spike times. In the previous section we
performed this mapping empirically. We now use a linear mapping between the dataset input or output space and
the range of input or output spikes. The mapping ranges are determined by the neuron dynamics as revealed in the
response curve. Recall that the response curve is a plot thatdemonstrates the effect of an input spike on the output
spike time. For the case of negative baseline currents, if the first input spike arrives very early on, it has the most
effect. For example, for a typical weight connection, an input spike arriving at 0 ms will alter the output spike time by
30 ms from the baseline firing time while an input spike arriving later on at 20 ms will only alter the output spike time
by 5 ms. In these cases, the baseline current is chosen such that the baseline firing time,tBL, is about 56 ms. From
this observation, it is reasonable to chose an input spike range of 0-20% oftBL. A similar analysis can be performed
for output spike times resulting in a range of 20-50% oftBL being useful for the desired range of output spike times.

The first regression problem we trained on a theta neuron network is the cosine function. While training the cosine
function, if batch training is used with a low learning rate,5e-7 or less, the network becomes stuck in a local minimum
where the cosine function is approximated by a best fit-line,a horizontal line passing through the origin. Using online
training, the network is able to recover from this local minimum (as occurs frequently with rate coded networks as
well). Once through this local minimum, learning proceeds rapidly for half the cosine, and then more slowly for the
other half. Using 8 hidden neurons,ηw=2e-6,Io=-0.005 andwini=0.01, cosine is trained to an MSE of 0.05 in 300
epochs. The number of training patterns was 60 while the number of testing patterns was 10. In both cases, patterns
where generated by randomly choosing a number in the input range of 0 to2π and simply taking the cosine of the input
to generate the desired output. The MSE for the test points (data patterns not directly trained on) is highly proximate
to that of the training points. This low MSE indicates that the network is interpolating between training patterns in
such a way that the general cosine function is being learned,as opposed to the case where there might be non-smooth
erratic behavior between training points.
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Table 5:Machine Learning Regression Experiment Overview. This table contains parameters and training results
for the machine learning regression experiments.

Cosine Sexton5
Inputs [0, 2π] [-100, 100]
Input Spikes [2ms, 8ms] [2ms, 8ms]
Output Spikes [20ms, 28ms] [20ms, 28ms]
Outputs [-1, 1] [9.9e-5 9.9e5]
Learning Rate 2e-6 4e-6
Baseline Current -0.005 -0.008
Initial Weight 0.01 0.01
Number Hidden Neurons 8 8
Online vs. Batch Online Online
Epochs to MSE of 0.05 300 545
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Figure 8:Sexton 5 Training. Io=-0.008,ηw=4e-6, andwini=0.01.

A more difficult regression problem is the Sexton 5 function (y = x3 − x2), which has a flat section around x=0. As
with cosine, a best-fit line local minimum exists. Once through this local minimum, half of the function trains rapidly
while the other half trains much more gradually. Figure 8 shows the regression results and MSE results. Using 8
hidden neurons,ηw=4e-6,Io=-0.008 andwini=0.01, Sexton 5 is trained to an MSE of 0.05 in 545 epochs and anMSE
of 0.01 in 936 epochs. Again, the MSE for the testing data indicates good generalizability.

5.5 Parameter Sensitivity

In previous sections we examined the importance of choosingappropriate input and output spike mappings relative to
the neuron dynamics. We continue in this section to examine three other parameters that are also important to network
training: the baseline current (Io), initial weight value (wini) and the learning rate (ηw). In order to better quantify
the relative sensitivity to each parameter, we train a reduced spike latency pattern classification data set and a delay
regression data set. These data sets are simple and quick to train, and yet are complex enough to be indicative of the
effects of the parameters under study. In reality, there arecomplex interactions between these parameters, thus these
sensitivity experiments should be viewed with appropriatecaution. The networks we used all had 3 hidden neurons
and unless otherwise specified,Io=-0.005,wini=0.01 andηw=3e-7. The reduced spike latency pattern classification
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problem had a stopping criteria of 0% classification error. The number of input patterns was 10, and the load was 1.
The output spike times for the two pattern classes were 20 ms and 24 ms (see Section 5.2 for more details). For the
delay regression problem, input spike times were trained tomap linearly to the output spike range of 16 ms to 28 ms.
The training and testing set sizes were 30 and 10 input patterns respectively. The stopping criteria was an MSE of less
than 0.1. In both cases, input spikes were generated from 2 msto 8 ms.

Recall that whenIo > 0, the neuron undergoes tonic spiking at some frequency determined byIo. WhenIo < 0, a
resting equilibrium appears and the dynamics of the neuron become richer as the phase may evolve in either direction
depending on the region it is in. In all the previous experiments we have taken advantage of these richer dynamics by
using neurons with exclusively negative values ofIo. As part of our examination ofIo, we vary this parameter through
a range of both positive and negative values. The magnitude is kept relatively small because the theta neuron model is
valid only when the neuron is near bifurcation, meaning thatIo is close to zero.

Figure 9(a) shows the training results asIo is varied over a region whereIo is close to zero and the number of epochs
required for training is less than about 8500. The minimum for both data sets occurs whenIo is approximately -
0.0055, which corresponds totBL ≈ 54 ms based on (4.0.2). For the regression data set, the acceptable values ofIo

are in a very narrow range around this minimum. The spike latency data set has a wider range of acceptableIo values,
including some values whereIo is positive. AsIo approaches zero, the phase ceases changing over time unlessan
input spike is recevied. Thus there are three minima on the plot, one corresponding to an optimal value ofIo being
negative, one positive, and one whereIo is zero meaning that the dynamics are determined by spikes only. It is likely
that the demand on the network is higher for the regression data set, and therefore the neuron dynamics whenIo > 0
are not sufficient enough to allow the network to be trained.

As ηw is increased from near zero, the number of training epochs decreases exponentially as shown in Figure 9(b). At
some point, the learning rate becomes high enough that the weights make too large of a jump, and the output neuron
may stop firing. The closer that the learning rate can be movedto this point, the faster than the network will train.

Finally, if wini is chosen on the correct order of magnitude as the final trained weights, then training may proceed
much more quickly. As a good heuristic, consider choosingwini such that the initial output spike time will be in the
middle of the output spike range for an average input pattern. To accomplish this task, consider the inputs as a single
input occurring at a mean input time which passes into a single hidden neuron with synaptic weightwiniN . Likewise,
group the output neurons together with a single weightwiniP . Training can then be performed on this simple multi-
layer two neuron, single output network. A differentwini can be assigned to each layer of the final network, or an
averge can be taken of the hidden and output layerwini to be used on the entire final network. Note that as the number
of input synapses increases, the size of the weight should decrease to preserve a constant initial output spike time. For
the delay network,wini for the hidden weights is found to be 0.0053 and for the spike latency 10-pattern classification
data set, an initialwini of 0.0053 is found. Both of these values agree approximatelywith the center of the range of
acceptable values forwini in Figure 9(c).

From the experiments to date, including some not published in this work, a few observations on training theta neuron
networks can be made. As with rate-coded networks, the errorinitially drops off rapidly and then slowly approaches
a minimum on the error surface. The shape of the MSE vs. epochscurve is a function of gradient steepest descent
training, so a similar MSE curve to that obtained using rate-coded networks is to be expected. Also similar is the
fact that online training helps prevent the network from getting stuck in local minimums (such as best-fit lines for
regression problems). A problem specific to spiking neuronsis spike loss. As was discussed in Section 5.4, in the
hidden layer spike loss can be beneficial by creating a variable-sized hidden layer, but in the output layer spike loss
can prevent training from converging.

6 Conclusion and Future Work

We have demonstrated that the dynamic properties of neuronsare sufficient to sustain universal type computations,
without the need to rely on the precise shape of PSPs. Although this result does not mean that the dynamics of
synapses have no effect on time-based computations, our work demonstrates that computations can be carried out
without relying on this level of description, and our comparison to other models suggests that it is more efficient to
do so. Computations were performed by networks of theta neurons trained using a learning rule based only on the
intrinsic neuron dynamics, with highly simplified synapticcurrents. In this way we have defined a time code that is
adapted to the natural dynamics of neurons and potentially uses less neural hardware for calculations because of the
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Figure 9:Network Parameter Training Sensitivity. Unless otherwise specified,Io=-0.005,ηw=3e-7 andwini=0.01.
As the parameters are decreased, training times increase gradually. However, when parameters are increased, neurons
may stop firing during training in a non-recoverable way. Forthe spike latency data classification data set, the demands
on the neuron dynamics are simple enough that training is possible whenIo > 0 and whenIo = 0 corresponding to
dynamics determined only by input spikes.
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Figure 9:Network Parameter Training Sensitivity. (continued)
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synaptic simplification and lack of multiple delay connections (Lengyel, Kwag, Paulsen, & Dayan, 2005). The theta
neuron model dynamics also allow for longer computational time scales as determined by the neuron response curve
rather than the much quicker synaptic dynamics.

Our learning rule takes advantage of both the non-linearityand the simplicity of the theta neuron model. Using
analytical expressions for the neural dynamics, we derivedrelatively simple expressions for the error gradient. In
our simulation experiments, we showed that the performanceof theta neuron networks compared favorably to other
spiking neuron learning methods when given appropriate training parameters. Our learning rule demonstrated much
higher generalization in a spike latency pattern classification task than did the Tempotron model. Training on typical
machine learning problems produced classification resultsthat in most cases exceed the performance of SpikeProp
or rate coded models trained with standard BackProp. Our work has demonstrated that networks of theta neuron are
capable of performing interesting and complex calculations using only the intrinsic neuron dynamics and are able to
overcome the limitations of comparable learning techniques.

In further research, theta neuron networks could be adaptedto unsupervised learning, different types of network struc-
tures, recovering non-spiking neurons, delay learning andlearning rate heuristics. The gradient calculation could be
expanded to use a natural gradient approach to account for interdependencies between synaptic weights (Amari, 1998).
Similar gradient-based learning could be applied to Izhikevich’s simple neuron model, which is two-dimensional, but
capable of modeling a broader range of neuron behaviors (Izhikevich, 2006). It is not clear that an analytic solution
exists for the error gradient in this model, but a slower numerical solution for the error gradient could also be used
for training. We are currently pursuing expanding the learning rule to accommodate more than one input or output
spike per synapse. In this way, complex input and output spike train mappings could be achieved, opening up exciting
applications in performing computations on natural signals from electrode recordings.
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Popović, D., & Sinkjr, T. (2000).Control of movement for the physically disabled: control for rehabilitation technol-
ogy. New York: Springer.

Reed, R. D., & Marks, R. J. (1998).Neural smithing: Supervised learning in feedforward artificial neural networks.
Cambridge, MA, USA: MIT Press.

Rieke, F., Warland, D., Steveninck, R. de Ruyter van, & Bialek, W. (1999). Spikes: exploring the neural code.
Cambridge, MA, USA: MIT Press.

26



Schrauwen, B., & Van Campenhout, J.(2004, 7). Extending spikeprop. In J. V. Campenhout (Ed.),Proceedings of the
international joint conference on neural networks (ijcnn)(p. 471-476). Budapest.

Thorpe, S., Delorme, A., & Van Rullen, R.(2001, July). Spike-based strategies for rapid processing.Neural Networks,
14(6-7), 715–725.

Thorpe, S., Fize, D., & Marlot, C. (1996, June). Speed of processing in the human visual system.Nature, 381(6582),
520–522.

Tonnelier, A., Belmabrouk, H., & Martinez, D. (2007). Event-driven simulations of nonlinear integrate-and-fire neu-
rons.Neural Computation, 19(12), 3226–3238.

Voegtlin, T. (2007). Temporal coding using the response properties of spiking neurons. In B. Schölkopf, J. Platt, &
T. Hoffman (Eds.),Advances in neural information processing systems(pp. 1457–1464). Cambridge, MA: MIT
Press.

Wolberg, W. H., & Mangasarian, O. (1990). Multisurface method of pattern separation for medical diagnosis applied
to breast cytology. InProceedings of the national academy of sciences(Vol. 87, p. 9193-9196).

Xin, J., & Embrechts, M. J. (2001, Jul). Supervised learningwith spiking neural networks. InProceedings of the
international joint conference on neural networks (ijcnn)(Vol. 3, p. 1772-1777). Washington D.C.

Zhong, P., & Fukushima, M.(2007). Regularized nonsmooth newton method for multi-class support vector machines.
Optimization Methods and Software, 22, 225-236.

27


