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Abstract

The main contribution of this paper is the derivation of a&ptest gradient descent learning rule for
a multi-layer network of theta neurons; a one-dimensionatiinear neuron model. Central to our

model is the assumption that the intrinsic neuron dynamiesafficient to achieve consistent time
coding, with no need to involve the precise shape of pos#sijo currents; this assumption departs
from other related models such as SpikeProp and Tempotaomitfegy. Our results clearly show that

it is possible to perform complex computations by applyingesvised learning techniques to the
spike times and time response properties of non-lineagiate and fire neurons. Networks trained
with our multi-layer training rule are shown to have simigg@meralization abilities for spike latency

pattern classification as Tempotron learning. The rule $s able to train networks to perform

complex regression tasks that neither SpikeProp or Tempdtarning appear to be capable of.

1 Introduction

Recent neuroscience research has shown that substafttiah@&tion about stimuli is contained in the timing of action
potentials. Examples include echolocation in bats, chaimgénsect flight patterns, visual stimuli recognition and
monkey reaction time in which it appears that only a small benof spikes is involved in the computation (Thorpe,
Fize, & Marlot, 1996; Rieke, Warland, Steveninck, & Bial&99). Other experiments have shown that spike timing is
important for hyperacuity, in which the signal to noiseoatf stimuli and output spikes allows for a greater resohutio
than at first seems possible. For example, weakly electhiccti® respond to signal changes from other fish on the
order of 100 nanoseconds (Carr, Heiligenberg, & Rose, 1986)

Computer simulations have shown that spiking neurons hawepatational advantages over rate coded neurons
(Maass, 1996b), that they are able to approximate compticatithematical functions (lannella & Kindermann, 2005)
and that they can generate complex periodic spike pattdéfam(mesheimer & Timme, 2006). Due to the temporal
coding inherent to spiking neuron networks, they are egfigaiseful for tasks with a temporal component such as
speech recognition (Alnajjar & Murase, 2005) or the contfartificial neuroprosthetics (Popovit & Sinkjr, 2000).

Previous attempts at training spiking neural networks hesesl a linear summation of post-synaptic potentials (PSP)
at the soma, combined with gradient-based supervisedtgpmies (S. M. Bohte, 2003; Giitig & Sompolinsky, 2006)
or more biologically realistic spike-timing-dependendgticity learning rules (Legenstein, Naeger, & Maass, 2005
For example, SpikeProp (S. M. Bohte, 2003) works by ling@agithe voltage at output spike times, in order to prevent



discontinuities. A number of extensions to SpikeProp hgygeared over the years, including networks of spiking
neurons that produce multiple output spikes (Booij & Nguy2B05), and reducing training times (McKennoch, Lui,

& Bushnell, 2006; Schrauwen & Van Campenhout, 2004; Xin & Eechts, 2001). In the case of the Tempotron algo-
rithm (Gutig & Sompolinsky, 2006), the learning rule atfgisito minimize the amount by which the maximum neuron
potential for incorrectly classified patterns deviatesfithe firing threshold. Tempotrons have been demonstrated on
binary classification tasks, which are only a small subsgtmmi€al learning problems. Classification is determined by
either the presence or absence of an output spike, a spikegabet is not readily extendable to non-binary classifica-
tion tasks. According to Gitig and Sompolinsky (2006), Teepotron is also expected to have degraded performance
at classification tasks where the input spike dynamics existultiple scales.

In these models, the shape of the post-synaptic potents)#s of critical importance to the training algorithm (in
Tempotron, the time of maximum neuron potential is directipendent on the PSP shape; in Spikeprop, the PSP
shape determines when the threshold will be crossed). Thijsesis dictated by a simple first-order linear differential
equation along with a voltage reset rule for when the spikimgshold is crossed, which together are known as the
linear integrate and fire (LIF) model.

A clear advantage of first order dynamics is that it makes #révation of a learning rule simpler, because the con-

tribution of a spike does not depend on the internal statbepbst-synaptic neuron. The post-synaptic and somatic
membrane potentials are written as explicit functions wieti thus abstracting away from internal neural dynamics.

Hence, the potential at the soma is a weighted sum of PSP#harmdntribution of a PSP to the sum is not dependent
on the internal state of the neuron when this PSP arrives.

However, this approach moves the computational burden fh@ensoma to the synapses. Indeed, the PSPs computed
at these synapses must be made to interact with each othrex pnecise way required for desired output spike times.
In (S. Bohte, Kok, & La Poutré, 2000), the authors requireudbe of multiple delay connections between each neuron
pair in order to allow for different interactions betweem theighted PSPs. For the XOR problem, SpikeProp requires
about 16 connections between each neuron pair, each wifffiegedit delay. The addition of these extra parameters
adds complexity to the learning problem. More cruciallg ihteraction between PSPs must take place on a small time
scale, that is limited by the size of the rising segment oRB®s (Maass, 1996a). The difficulties faced by LIF-based
networks suggest that something important has been losgisitplification. Some authors have argued that the LIF
model should be avoided at all cost (Dayan & Abbott, 2001riklg 2003; Izhikevich, 2004), because assumptions
such as a linear approximation for the overall membraneeatiand a simplified action potential description are too
simple to reflect real neuron dynamics.

In order to increase biological realism, the LIF model usgdspikeProp and Tempotron learning, also called the
simplified spike response model (SRMGerstner & Kistler, 2002), can be made into the full SRM higiag de-
pendencies on the time since the last output spike was pedduoto the response kernels (Gerstner & Kistler, 2002).
As was the case with SRMthe full SRM does not have internal state variables. Imktealtage is still an explicit
function of time, which in principle would make it possibte éxtend the approach used in SpikeProp or Tempotron.
However, the mathematical analysis is much more difficuthst case, and a learning rule adapted to the SRM has
yet to be derived.

Another way of matching more closely the neural responsesiigroduce more realistic differential equations in the
description of the neuronal dynamics (Feng, 2001; Izhikev2004). Perhaps the most realistic conductance-based
dynamical neuron model is the Hodgkin-Huxley (HH) modelrdPaeters in the HH model were derived empirically
in part, and thus exhibit good biophysical grounding. Thelei@onsists of four interdependent differential equation
that model the membrane potential and gating variablesrGivat there are four state variables, the dynamics of the
HH model are not entirely amenable to analysis. A common Kficgtion is to assume that certain gating variables
have very fast time constants, and thus can be approximgteebly steady-state values. This simplification reduces
the model to a membrane potential variable and a recoveighblarthat can then be analyzed using phase plane
analysis. Two-dimensional biophysically grounded modwitude the FitzHugh-Nagumo and Morris-Lecar models
(Gerstner & Kistler, 2002). The Izhikevich simple model bbice is also two dimensional and is designed to capture
a full range of neuron dynamics at the expense of reducedigigal grounding (Izhikevich, 2006). Even with the
reduction to two state variables, the neuron model is coxgt®ugh to make certain types of analysis very difficult

if not prohibitive. However, rather than return to the LIF$R M, models, Izhikevich argues that quadratic integrate
and fire (QIF) neurons should be used instead (IzhikevicBh4pQthey are nearly as computationally efficient, but
have additional important dynamic properties, such aseslaitency, bi-stability of resting and tonic spiking modes,
and activity dependent thresholding. QIF neurons also hdkeguency response that matches biological observations



better than the LIF neuron (Brunel & Latham, 2003). By a sirtphnsformation, the QIF can be mapped to the theta
neuron model, a non-linear phase model.

Non-linear models such as the QIF have the important prplest their response to an incoming synaptic current
is not constant across time, but changes with the interag stf the neuron. In (Moegtlin, 2007), it was proposed
that time coding should be adapted to this property. In thigopsal, spikes arriving at different times will trigger
different responses, and this precisely attributes dgiffemeaning to different spike times. Thus, the dynamicaese
properties of neurons are essential and must be preserg imetiron model. This cannot be achieved with the LIF
model. However, the relatively simple (one-dimensionadtda model has non-linearities that allow for modeling
variable response properties. The cyclic nature of theathetiron phase model also allows for a continuous reset
(as opposed to the quadratic model), thus allowing for dévig based calculations without any sort of linearization
assumptions. This model was chosen for the derivation cdidignt-based learning rule (Moegtlin, 2007). The learning
rule was later extended to a robotic application where thigigcdependent thresholding property is used as a noise
filter (McKennoch, Sundaradevan, & Bushnell, 2007). Howgtree method by Voegtlin (2007) was developed for a
single-layer of neurons only, which is not sufficient to appmate complex functions. In addition, it made certain
assumptions about the gradient that prevent training inyroases.

In this paper we develop a multi-layer gradient descenhiegrrule that is based on the theta neuron model dynamics,
and that can perform the same kind of tasks as SpikeProp opdteom. In our model, computations do not rely on
the shape of post-synaptic currents but rather on the gitrimreuron dynamics. Thus, in the derivation of our learning
rule, we greatly simplify the shape of synaptic currents.aMenot claiming that synaptic time constants do not play
arole in natural systems. For example, synaptic time catstaave an effect on the period of oscillations in coupled
networks (Marinazzo, Kappen, & Gielen, 2007; Borgers & Eibp2003). However, our hypothesis is that they are
not essential to time coding.

Essential for this learning rule is the development of arhital event-driven framework for simulating theta nenso
Event-driven methods use the exact or analytical solutiothé neuron’s dynamics. The state trajectory of spiking
neurons is determined by the intrinsic neuron dynamics hadynaptic inputs. When the synaptic input spikes are
relatively sparse, it is more efficient to view the neuron &ylarid system having both time-driven state changes as
driven by the intrinsic dynamics and asynchronous eveinedistate changes as driven by synaptic inputs (Cassandras
& Lafortune, 2006). If an analytic solution exists for the&-driven state changes we need only separately calculate
the event-driven changes of state when an input is receivéth&n use the analytical solutions to the dynamics of the
neuron to project the state to the next input spike time.

Additionally, many of the more complex neuron models do nmteha closed form analytic solution for the state
variables, thus numeric integration is unavoidable. Nuca¢integration is sensitive to an artificially chosen time
step. If the time step is too large, the firing results may edarate. This inaccuracy is increased as the magnitude
of the synaptic efficiency parameters increases. If the 8stap is too small, simulations will take an unreasonable
amount of time to complete. Event-driven methods have beeeldped for the LIF neuron (Mattia & Giudice, 2000),
and more recently for the QIF neuron as well (Tonnelier, Bddnouk, & Martinez, 2007). The development of this
event-driven framework and the accompanying learning cafestitute the novel work in this paper and together are
used to perform complex computations using only the inicidgnamics of non-linear neuron models.

The paper is organized as follows. In Section 2 we preserthiéta neuron model and its properties. In Section 3 we
derive a learning rule that can be applied to both the outpdtradden layer of a multi-layer theta neuron network.
Section 4 describes our event-driven simulation framewdmkSection 5 we verify the new learning rule through a
number of simulation experiments. We include an analysigeafing rule performance using simple inverter and
delayer data sets and replicate the spike latency pattassification experiment performed with Tempotron learning
in (Gutig & Sompolinsky, 2006). Next we train a multi-laygreta neuron network to learn a number of standard
machine learning classification and regression problenmmgarisons are made to similar results produced using
SpikeProp. Experiments are also performed to demonstiatednsitivity to three important network parameters.
Section 6 gives conclusions and future work.

2 Theta Neuron Model

In this section we present the theta neuron model, the neuoatel around which our learning rule is derived. The
theta neuron model is a canonical model, meaning that igfiufor capturing and generalizing the relevant dynamics



of a class of models. More specifically, the theta neuron rris@anonical in the sense that any Type | neuron close to
its bifurcation point (of type saddle-node on invariantt@r(SNIC) since this is a Type | neuron), can be mapped to the
theta neuron model. In Type | neurons, the output spike Eaquincreases smoothly from zero as the input current
is increased. This type of neuron model is well suited for eliog) cortical excitatory pyramidal neurons (Izhikevich,
2006).

As with all canonical models, the theta neuron model is fatftem a piece-wise continuous change of variables
from other neuron models. In the case of the QIF neuron mddet, perform the following change of variables from
potential,u, to phased,

u(t) = tan (@) (2.0.1)

we arrive at the canonical theta neuron model (G. B. Ermenh&d&opell, 1986). The theta neuron model produces
an output spike when the phase passedhis change of variables indicates that we are consid¢hegase where
the quadratic model spike magnitude goes to infinity (inditiine), corresponding to a phasenofThe phase evolves
towardsr in the absence of input spikes once the spiking threshﬂ@lgx has been passed.

The theta neuron model has been used in a number of expesisigett as synaptically generating traveling waves
(Osan & Ermentrout, 2001) and developing spike train gtesisn the presence of white gaussian noise (Lindner,
Longtin, & Bulsara, 2003). Theta neurons represent an xddrade-off between model complexity and analytical
tractability. Being a one-dimensional model, they cannotel complex neuron dynamics such as bursting, however
their dynamics can be viewed quite simply on a phase cir¢heerahan resorting to full phase plane analysis for 2-D
models. The quadratic and the theta neuron model are amemgdkt simple models that are excitable, which means
that for small perturbations from the neuron’s resting Bloiiiim, these perturbations may become greatly amplified
before the neuron returns to rest. Spikes may be cancelteddlsevell. Recovery is implicit in the cyclical nature of
the theta neuron model, eliminating any need for a sepagateery state variable.

The trajectory of the phase in a theta neuron is described by:

Tfl—f = (1 —cosf) + al (t) (1 + cosb) (2.0.2)

wherer is the neuron phase time constamts a scaling constant; addt) is the input current that drives the dynamics.
As was done in (Lim & Kim, 2007)r is setto 1 ms in to create a correspondence between this rmodetal spikes
which have widths on the order of milliseconds. As previgusthted, we focus on using the neuron dynamics to
support complex calculations. Because we are assumingythaptic time constants are non-essential, we are able to
treat our synaptic current inputs as instantaneous shpciksnrmodeled by Dirac delta functions. In this way, equation
(2.0.2) remains the only equation of state that we need tp ieek of.

Synaptic currents depolarize or hyperpolarize the mengbparential, and thereby increase or decrease the phase,
depending on the sign of the synaptic efficiency. The totplircurrent,/(¢) is defined as the sum of a baseline
current,/,, plus the sum off synaptic impulse inputs at timegwith size modulated by weights;:

J
I(t)=T,+ Y wd(t—t;) (2.0.3)
j=1

WhenI, > 0 alimit cycle forms, which causes spikes to fire periodicallya function off,. As I, approaches zero,
the frequency also approaches zero, which is in effect tfiaitlen of Type | neural excitability. Whed, < 0 two
fixed points can be found by setting (2.0.2) equal to zero ahdrg for 6. One fixed point is a saddle poirtt,),

and the other is a stable fixed poiff;(;). The neuron phase (directly mappable to the membrane tEl)enoves
around its phase circle toward the stable fixed point and dwesny the saddle point. When the phase crossebe
neuron is said to have fired. In Figure 1, the unforced respohihe neuron is plotted as a phase circle, and is broken
up into three operating regions for the case whigre: 0. The neuron phase right before tftd input spike arrives is
defined a#/;", while the phase right after this input spike is definecﬁ;és Because synaptic currents are modeled as
impulses,
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Figure 1:Theta Neuron Phase Circle.The theta neuron phase circle is shown for the case wherat®dite current

1, < 0. When the phase passeshe neuron produces an output spike. In the spiking regi@neuron will fire after
some period of time. In the quiescent region, the phase wdbg back td ., unless enough excitatory input spikes
push the phase into the spiking region. In the refractorijorethe phase is recovering from a previous output spike,
thereby making it more difficult to immediately produce dreatoutput spike. This type of refractoriness is relative
(rather than absolute in which immediately producing aeptiutput spike is impossible).

0-
9; = 2atan <awj + tan (%)) (2.0.4)

which follows from equations (2.0.1), (2.0.2) and (2.0.85 in (Voegtlin, 2007), the remaining time until the next
output spike as a function of the neuron phase is:

T

F(t) =

/ do _ P
(1 —cosO) +al (t)(1+cosf) ~ '®
0(t)

If there are input spikes; is discontinuous and can be broken up into continuous pieces

g1 lip

do i
F(t;) = = |
(t:) Z (1 —cosf) + ad, (1 + cosh) ; |9;r

Jj=t +
9.7‘

whered; = w. The input spike times are ordered, thus> ¢,, etc.

Theta neurons exhibit the interesting properties of spiitericy and activity-dependent thresholding, both of which
do not exist in the LIF model. Spike latency refers to the sa&jen of the time between when the phase exceeds
the spiking thresholdd( > 61 ,) and when an output spike is generat@d< 7). This separation allows for further
incoming input spikes to modulate or even cancel the outpikies Activity-dependent thresholding means that a
spike’s effect on the phase depends on the internal neuai Sthis state is determined by the magnitude and timings
of input spikes already received as well as the current sgsl&hown in Figure 2.

A strong benefit of activity-dependent thresholding in owdal is the long time scale over which computations can
take place. In the SpikeProp model, the length of the risegagreent of the PSP limits the range of computation. For
example, in a two input dataset, for the SpikeProp modeldfittputs are spaced farther apart in time than a few
synaptic time constants, then the effects of the input spiki# be independent of one another, greatly reducing the
computational possibilities. In contrast, our practi@alge is the section of the response curve where the response i
not constant, which as shown in Figure 2 is on the order ofeénslliseconds. Unlike the SpikeProp and Tempotron
models, these long time scales also allow for computatidrer&input spike dynamics exist at multiple scales.



NECO-09-07-610-Figure-2

50 :
---w=0.001
~ow=0.01

40+ L—w=9.1

% 30r 1
=
°
< 200, 1
10f 1
0 ‘ ‘ e
0 10 20 3 40 50 60

Figure 2: Theta Neuron Response CurvesThe curves show the change in output firing time () when there is a
single input spike (at;) compared to no input spikes at all. The baseline curlgnt; —0.005. Curves are shown for
different positive values of synaptic weights. In all caghs firing time is more effected when the input spike occurs
earlier. Given that the initial phase used here is 0.000¥@#p,,, if no input spikes occurred the neuron would fire
at a baseline firing time,z;, = 56.2 ms. Of importance is the time range over which the responeetisonstant,
meaning the range over which computation is possible. Ddipgron the weight, this time range is nearly the entire
span of time from 0 ms untilz ..

In addition, activity-dependent thresholding eliminaties need for delays. In the SpikeProp learning methodology,
each synapse must be expanded to a group of synapses eachdiffdirent delay such that there is an appropriate
range of delays specific to the training data set. These sletay also be trained using the method in (Schrauwen &
Van Campenhout, 2004). Delays are needed to cause thesesregpotential from each input spike to interact in the
way needed to produce the desired output spike times beeaauisput spike of a given magnitude will change the
neuron potential by an equal amount regardless of when pha épike occurs. Recall, with the original SpikeProp, 16
separate connections between neuron pairs were needbdyidadifferent delays, in order to learn the simple binary
XOR problem. In the theta model the effect of the delay is ipooated directly into the intrinsic neuron dynamics,
thus eliminating the need for delay training or multipldistdelay connections.

3 Theta Neuron BackProp Training Rule

This section presents the development of a steepest demtentack-propagation learning rule for theta neuron
networks. The method described refines our recently degdlgpadient based method for training the output firing
times of a single layer of theta neurons (Voegtlin, 2007)e Previous method only applied to a single layer of theta
neurons and also made certain simplifications in the erradignt calculation that under many conditions make it
a non-ideal approximator to the exact error gradient. Theniag rule derived applies to neurons that receive and
produce one spike per synapse, although the training ruillel @ generalized for multi-spike domains.

The network topology is a fully-connected multi-layer fémevard network. We use the following notation conven-
tion: Z, H andO, the set of all input, hidden and output layer neuron indiespectively. The sizes of these layers are
|Z| = M, |H| = N and|O| = P. The indiceg andk are used as generic neuron indices. The indiees andp are
used for referring to neurons on the input, hidden and ougyétrs respectively. The desired firing time of an output
neuron ist,, while the actual firing time i¢,. Neurons in a layer are indexed by the order of the outpuespikat
they produce. Hence for the hidden neuron which producefrteutput spikep=1. This choice of notation may
cause the indexing to change from one input pattern to the bekthis change is not problematic. Figure 3 shows a
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Figure 3: Multi-Layer Computation. This raster plot shows the spikes being propagated by alh¢heons in a
network trained for calculating two different input patierof the cosine function. There is a reference input at 1 ms,
and two inputs at 8 ms and 2.23 ms respectively representisige input values. Each grayscale pixel represents
a spike on a specific synaptic connection. There are two igpilkes, but because there are 8 hidden neurons (not
all of which fire in pattern 2), the spikes get modulated défely coming into each hidden neuron. The grayscale
pixel coloring refers to the synaptic weight with darkerarslbeing more excitatory and lighter colors being more
inhibitory.

spatio-temporal raster plot of the spikes propagatinguthinca network trained to calculate the cosine function (See
Section 5).

Our learning rule is based on the steepest gradient desathbth Steepest gradient descent learning algorithms
are often the basis of more complex learning rules (RPropuidkProp for example (Reed & Marks, 1998)). The
learning rule developed here is shown to be structurallyilainto the classic Error BackProp used in rate coded
neurons, but is adapted to the non-linear spiking thetaomemodel. For example, because the effect of an input spike
is voltage dependent, the calculation of the error backggapion terms becomes recursive. The derivatives needed
for gradient descent are based on event-driven simulaithmiques which are developed in Section 4. This technique
involving the analytical solution of the remaining time @ion is much more efficient than time based techniques
when the discontinuous changes to the neuron phase aiealglaparse?

3.1 Output Layer Weight Training
The following derivation describes how weights affiliateithaconnections between hidden and output neurons should

be adjusted in order to achieve desired firing times. The éora single input pattern is defined as a sum of squared
errors (SSE):

1 _
E= §Z(tp—tp)2 (3.1.1)

1The gradient equations derived in this section were alfieetby comparing to a numerically calculated gradient oviéernt
parameter combinations. In all cases, the difference letvtlee numerical and calculated gradient was negligibld, anthe
numerical step size decreased, the difference decreasesllas



As with any gradient steepest descent learning rule, thgi®are incrementally adjusted in the opposite directfon o
the error gradient. In batch learning, all input pattermesmesented before the weights are changed (by the summation
of the changes required by each input pattern), while foineriearning weights are changed after the presentation of
each input pattern. In either case, one epoch is defined ggekentation of all input patterns once. Following the
notation of traditional error backpropagation in rate abdeural networks, the gradient calculation may be broken
up into terms found by moving forward through the networkand terms found by backpropagating the error back
through the networky). For the output layer:

OF OE ot,

Aw = Nu=——" = "Nw=—
np T]?/awnp /r]/l) atp awnp

= —TNw 5pynp (3 12)

wheren,, is the synaptic efficiency learning rate. The gradient téiy dw,,, is found by taking derivatives on the
event-driven equations found in Section 4. The functiogaiwalents are reproduced here:

E:fl(tp, Ep), tpzfg(tN, 0;, Oé[o),

. -~ B \ (3.1.3)
9] = f3( 9] , Wy, « )7 9J = f4( 9]‘_17 tj _tjfla an )

Let NV be the index for the final input spike before an output spikest®ived. Input spikes which occur after the
output spike have no effect. Expanding (3.1.2):

+ - _
OE 0Oty 891\717 891\71) B a9(n+1)27 89%
T 39— Apt ¥

Oty 89Np 39Np 89(1\7—1);; 00y,  Ownp

Awpy, =

This chain rule expansion relates a weight’s effect on thed Bnror by stepping through all the functional dependen-
cies. The input spike from neuronwill alter the effect that all subsequent spikes (from negno + 1 throughV)
have on the phase of neurprand therefore the output spike timg, as well. The first and second terms are easily
calculated:

oOF _ n 8tp _ —1
(1—005 0+Np) +al, <1+cos 9;51))

at, = v~ tp 0%
The last term and terms of the tyﬁé;;,/aej; are calculated by differentiating (2.0.4):

bo _ (14cost],)
80;}) - (1+cos 0;0)

69::/” =a(l+cosb)), 20}

np

Terms of the typ@@ﬂ,/a%fl)p come from taking the derivative ¢f; in (3.1.3) and applying a number of standard

identities from trigonometry:

89;1) _ (1 — cos Hj_p) + al, (1 + cos Hj_p)
+
0051, (1 — cos 9;;.71)1)) + al, (1 + cos 9&71)1))

Combining the previous two equations:

39;;) <tan2 <017p) + an) (1 + cos 9;;)
= (3.1.4)
+
0051, (1 — cos 9;;.71)1)) + al, (1 + cos 9&71)1))

8



Putting the results together reduces to the following liegyrule.

Output Layer Learning Rule

Awnp = _Uql;épynp
op = (tp - tp)
Ynp =
! (1 — cos 9}71)) + al, (1 + cos 9;@) j=n+1 69;;‘—1);3

3.2 Hidden Layer Weight Training

A portion of the analysis of the hidden layer is similar to theput layer analysis. First consider:

A OF oF 0Oty 5
Wmn = " Nwaza —— = " Nwa;, 5 = TwonlUmn
T w0ty Qw0

The analysis for the last terid,, / Ow..», is identical to that from the output layer arriving at:

o0+ (‘can2 (%) + aL,) (1 + cos Hjn)
jn__ _

892}71)71 - (1 — cos 9671)71) + al, (1 + cos 9(4;.71”)

—a(1+cosOf ) ﬁ 803’+n
Ymn = J——
(1 — cos GXM) + al, (1 + cos 9;\'@) j=m+1 896‘—1)17,
Now back to the first term:

_OE OF ot
on = otn, 2 ot, Oty
ty >ty

The second term in this summation is the most complicated tarthis derivation. By taking into account the
functional dependencies described in (3.1.3):

+ /n _ -

8tp . 8tp aeNp 2 80]@;0 agﬁ‘—l)p dg(n+1)p (3 2 1)
=t 1] 55 = 2.

Otn 007 00 \ 5 0051, 004 1), | din

Further expanding the last term:

dg(_nJrl)p _ a9(_n+1)p + a9(_n+1)17 89:;17 897:1)
dtn ot,, 00y Obnp Oty

There are two terms inside the parentheses beo%}y§§)z) is a function of the change in time since the last input

spike, sot,, appears twice. Much of equation (3.2.1) has already beemuleéd byy,,. Thus to avoid redundant
calculations, it is helpful to rewrite this equation in texg,, and the remaindet,,,:



ot,
8_721 = YnpTnp

where:

N dg(_nﬂ)p a9(_n+1)p 89;517
" dty, 00,  Owny

Putting the results together reduces to the following legyrule.

Hidden Layer Learning Rule

Awmn - _nwdnymn
517, = Z 5pynp'7np

tp>tn

- —a(1+cosb)) ﬁ 067, (3.2.2)
mn — an+
(1 — cos 9;\'@) + al, (1 + cos GEH) it 9051,

Orp
Ynp = —Wnp | @Wnp + 2 tan 53

With this result, along with the output layer learning ruieSection 3.1, training of multi-layer theta neuron netveork
is now possible. These equations also apply regardless@th&hthe baseline current is positive or negative.

3.3 Analogy to Rate Coded Neural Networks

The learning rule results developed in this section areogmals to the backprop-algorithm derivation for rate coded
models. The variablgis calculated by moving forward through the netwafks calculated by then propagating the
errors back through the network. The variable specific to a neuron, regardless of which input we are exiagi In

rate coded modely,is also specific, but for our system the interaction betwhenransfer function and input timings
do not allow this effect to be separated out, and/$s specifically a measure of the effect of the weight between
neuron and neurork on the output spike time of neurdn

Recall thaty;;, indicates the value of between neurongandk, wherej andk index the neuron firing order in two
different layers. Ag increases (meaning we are examining neurons whose outpattspes occur later and later),
y;, Will tend towards zero. Generally, each subsequent inpaitdss and less of an effect on the phase. The last parts
of equations (3.1.5) and (3.2.2) multiply these effectstenghase together, forcing;, towards zero. This is similar

to sigmoidal saturation in terms of rate coded models. Thiabkey;, will actually reach zero when enough input
spikes have preceded it so that subsequent input spikgs after neurork has already fired. Since the input arrives
after the output, it has no effect. Interestingly, may also be viewed recursively:

0, 2
awjp + tan | =3¢ +al,

Yg+1)k = e Yjik
tan2 ( <.7';1>k> +al,

Recursiveness makes intuitive sense here since the thetariacorporates the activity-dependent threshold ptgpe
that states that the effect of each input spike is based goréwous input history.
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4 Event-Driven Simulation

In this section a collection of equations are derived thabéthe dynamics of the theta neuron to be simulated using
an event-driven (rather than numerical) methodology. Mistence of these event-driven equations make possible the
derivation of exact expressions for gradient terms, witliesorting to linearization or other simplifying assunopis

as was presented in Section 3. The derivation is based ohékeereuron’s remaining time function. The remaining
time function describes the amount of time remaining umtibatput spike is produced as a function of input current
and phase. This function was previously shown to have aryticedisolution in (B. Ermentrout, 1996). However, the
authors of that work were more interested in aspects of mesynchronization and thus did not develop the analytic
solution into one that handles input spikes, removes inaginumbers from the calculation, or which accounts for
both positive and negative baseline currents. The methgdoyed here is analogous to the event-driven simulation
method for impulse inputs in QIF neurons derived in (Toreredt al., 2007). Because our method here is applied to
theta neurons rather than quadratic neurons, it has thatit® handle multiple input and output spikes in a more
mathematically concise way. The post-firing phase reseuadrptic neurons is handled by a rule, outside of the
differential equation that describes the neuron dynantittsvever, in theta neurons, because of the cyclic nature of
trigonometric functions, after passingthe value of the next pre-synaptic input phase autométisaleduced by,
placing it in the refractory region and ready to handle mopait spikes.

The phase of the theta neuron evolves smoothly accordingi®?2) except when input spikes occur, thus we would
like to calculate the neuron phase at an input spike time as@ibn of previous spike times and phase at those spike
times. The integrated remaining time function for when thsdline current is negative is:

0
F = —% atanh (Lrlﬁ(i)>

wheres = +/|al,|, a constant which appears often in our calculations. Frasreifjuation we can derive the relation-
ship between the phase and time for a baseline trajectogyinttex of thejth connection to neurohis j, given that
the inputs are sorted by their firing times.

tj =ty +F (%) - F (9(?71),“)

aj—k = 2atan {6 tanh (—ﬁ (tj =ty + F (%—Uk))ﬂ

Using a number of trigonometric identities as well as (2.:¢ have the following two equations that can be used to
evolve the neuron phase according to received input spikes.

- ﬁ(ﬁ_k +02_~k) + ﬁ(ﬁ_k +02_~,€)
ij = 2atan {W , ij = 2atan |ow, + W
wherec; ;, = tan (9(?71)1?/2) /6 andcy,, = tanh (—f (t; — t(;—1))). If the neuron fires during normal movement

around the phase trajectory (as opposed to on an input gpigethe output spike timey) after the last input spike,
ty has occurred is:

1 1
tr =ty + — atanh (4.0.2)
5 Clint1)k

The baseline firing timetz,, that is the neuron firing time in the absence of input spikas, be determined from
(4.0.1) under the assumption that the neuron phase is irptkieg region.

1 g
tBL = B atanh (@) (402)
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wheref, is the initial phase. Throughout this paper we &gto a small amount (0.0001) above the positive fixed
point. Time zero then is defined at the point when all the thetzrons in the network have their phase seijtand

are then left to evolve according to their dynamics. Addiéitly, each neuron is assigned a reference input which is
defined to come at a fixed time before all the other input pagpikes. This reference input effectively allows all the
neurons to have different initial phases at this refereinoce (since the weights connecting the neurons to the referen
inputs will vary upon training). Whe#, is positive, the equations are slightly modified:

0
F = %atan <%>

0, = 2atan [ﬁtan (5 (tj —tGoy + F (%—ka)))}

Again, using a number of trigonometric identities we have:

_ 5(61, Fca ) 5(61, Fez, )
0, = 2atan {715;,& 02;: } , 0f, = 2atan {awjk + 717011".“: 02;:
The equation for, , is unchanged from wheh, < 0, but nowe,,, = tan (8 (t; — t(;_1))). The output spike time
after the last input spike has occured is:

1 1
tr =ty + — atan
B Cling e

Using a simple dataset that emulates logical inversion astachse (see Section 5.1 for more details on the dataset)
and a theta neuron network wifp=-0.005, an initial phase just above the positive fixed paimd 5 hidden neurons,
the event-driven simulation method takes about 240 ms fohn eatput spike time calculation, while the numerical
integration method takes about 5 seconds. The event-delenlation has almost a factor of 50 improvement in
speed. This speed improvement holds under most testingtmong] and starts to gradually decrease only when the
number of hidden neurons is very large, or the number of ispikees is large. Thus we can conclude that event-driven
simulation provides a valuable speed benefit under mostalayperating conditions.

5 Experiments

In this section, we perform a series of experiments that nse-aouse built Matlab graphical user interface which is
capable of simulating and training theta neuron networkissiavailable by contacting the authors. These experiments
use the training rules derived in Section 3 to examine difieproperties of theta neuron training and to compare the
results to other relevant experiments. The first expeririseattoy problem involving a single neuron with a single
input in order to demonstrate the basic properties of thenleg rule. The second experiment involves a biologically
significant problem of learning to classify spike latencit@ans and is compared to results obtained using Tempotron
learning.

Next, a number of more computationally intensive multidaynachine learning problems are discussed. Results in
these cases are compared with SpikeProp and other Neused-tearning methods. One regression problem we learn
is the cosine function. Because cosine is one of the bastdifuns for the Fourier series, being able to learn cosine is
a strong indicator of universal function approximationlipi Put another way, if we can learn a cosine of arbitrary
frequency and phase, then networks trained in this way doeifdlaced side by side with the addition of another layer
to add the cosine outputs together into the approximatectium The addition of cosine terms requires that we be
able to train a network to perform linear addition, which wiame successfully in other experiments that we ran and
that are not shown here.

Finally, we examine the sensitivity of theta neuron netvwdik network parameters. Overall, our experiments show
that the theta neuron networks trained with our rule perfasrwell as or better than other comparable spiking neuron
training techniques and also show how training and netwarkimeters can be chosen. For efficiency purposes, all of
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Table 1:Inverter & Delayer Training Results . A single neuron with one reference input was batch trairséaguthe
inverter or delayer data set. The stopping cirteria was ak Mif3.05 or 2500 epochs, whichever came firgt=2e-7

and ,=-0.005.DNC stands foiDoes Not Convergand indicates that either the output neuron stopped firirgadr
2500 epochs were reached and the error had become osgillktbe data set did not converge, smaller learning rates
were attempted to verify that the reason for not convergiag mot because of too high a learning rate.

METHOD INITIAL TRAINING EPOCHS

WEIGHTS | Inverter | Delayer

Method by Voegtlin (2007) 0.01 0.01 | 668 DNC
0.010.02 DNC DNC
-0.010.02 | DNC DNC
0.020.01 | 524 DNC
0.02-0.01 | 11 DNC

Proposed Method 0.010.01 684 114
0.010.02 | 819 20
-0.010.02 | 992 312
0.020.01 | 585 197
0.02-0.01 |8 290

the experiments use event-driven simulation for detemgiine impact each input spike has on each neuron’s phase
(see Section 4). The scaling parametelis set to 1 throughout.

5.1 Simple Inverter & Delayer Training

In this section we seek to design an experiment which vigutdmonstrates our learning rule. The simplest possible
network is a single neuron with one input in addition to a refice input. Recall that the reference input receives a
spike at a fixed time regardless of the input pattern, in mhehsame way that the bias input works in rate coded
networks. This simple network has two parameters, the weigbociated with the reference input and the weight
associated with the variable input. For a given input patieis possible to calculate the error in between the actual
and desired output spike times for different values of thesgparameters. Because we are using only two parameters,
the error surface may be viewed as a three dimensional p&ihguhis error surface we can examine the trajectories
of the weight parameters as they are trained. Ideally, timieg method should minimize the error, so the trajecsorie
will move from the initial weight point to a value of the weighat which there is a minimum on the error surface.

Two such simple problems are the simple inverter and delpseslems. The reference input time in each case is 1
ms, and the possible inputs times are 3 ms and 6 ms. For theenuwhe desired output times are 30 ms and 20 ms
respectively, while for the delayer, the desired outpuesmare 20 ms and 30 ms. For the inverter, the final trained
weights that achieve this output spike time mapping are thahthe reference input weight is negative, forcing the
phase into the quiescent region between the two fixed polrite.second weight is positive which brings the phase
back above the positive fixed point, ensuring that the newitireventually fire. Thus we are able to test that our
learning rule remains valid when the neuron phase is temipoiathe quiescent region.

If the theta neuron fires during the normal phase trajectbeyputput spike time is determined exclusively by the final
input spike time and the final post-input spike phase acogrtti equation (4.0.1). The method proposed by Voegtlin
(Voegtlin, 2007) derived an approximation to the error ggatibased only on the input spike to which the weight is
associated. This method however creates a discontinuibeifinal gradient a&;fp, a discontinuity that is not present

in the exact gradient. Table 1 compares training resultheimverter and delayer using different initial weight \edu

for the approximate method in (Moegtlin, 2007) and the meétthescribed in Section 3 which finds the exact gradient
analytically. Training with the approximate gradient nutioften fails to converge for the parameters shown. In cases

where convergence does take place, convergence timesralar $0 the method proposed here.

The error surface for both the inverter and the delayer,angata downhill trough with a shallow slope on one side and
steep slope on the other, above which the neuron does ndtfifggure 4 the MSE trajectory for the calculation using
the exact gradient method in this paper is identical to thmerically calculated exact gradient, while the gradient
approximation method from (Moegtlin, 2007) does not cogeeo the global minimum. Successful training of the
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Figure 4: Inverter Error Surface. Two MSE trajectories are shown using a single neuron withiopet plus the
reference input. The white trajectory was calculated usie@pproximate gradient calculation method from (Moagtli
2007), while the black trajectory was calculated using daring method proposed here. The trajectory using the
previous rule exhibits erratic behavior due to an artifidiatontinuity that the gradient approximation rule proekic
while the method described in this work follows the numdlyoealculated gradient trajectory exactly and minimizes
the error as desired. The MSE in the top right of the graph @efined since the neuron did not produce any output
spikes. The initial weights are represented by the blagitesiand the global minimum is represented by the white
circle. White contour lines are provided as well.

inverter data set has verified that training is possible éqiescent region. This result is expected since it is theesa
differential equation that describes the neuron behawioal regions.

5.2 Spike Latency Pattern Classification

In this section, tests on a single neuron are continued, liht aymuch more realistic test to determine the theta
neuron’s spatiotemporal classification and generalinaiulities. In this case, the input is a vector. For eachinpu
pattern a spike time for each synaptic connection is chasemdom and assigned one of two class memberships. The
learning of these classes is referred to as spike latentgrpatiassification. Spike latency codes have been shown to
play an important role in both retinal ganglion cells (Therpelorme, & Van Rullen, 2001) and the olfactory system
(Hopfield, 1995). As in (Gitig & Sompolinsky, 2006) the load the system/[., is defined as the number of input
patterns divided by the number of input synapgéds,Here we train a single neuron witf =500 andL = 1 to have

to 0% classification error. Classification error (CE) is tleegentage of input patterns that are classified incorrectly

Different output spike times are assigned to represergraifft classes. For an input pattern to be classified coyréctl
must produce an output spike that is closer to its class’udgpike than to any other class’ output spike. In (Gitig &
Sompolinsky, 2006), the presence or absence of an outpkg dpitermined the classification. This encoding scheme
could be approximated by the theta neuron. In theory, if daerling rate was arbitrarily small and the floating point
precision of the computer in use arbitrarily large, thenghase could be moved arbitrarily close to the positive fixed
point, and thus produce an output firing time of any positee number, even approaching infinity. More practically
however, choosing very small learning rates makes leaqingeed much slower than is necessary, and moving the
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phase arbitrarily close to the positive fixed point incresatbe likelihood that the phase will get pushed to the other
side of the positive fixed point, causing the output spikega@nceled. Thus we instead chose to use specific finite
desired output spike times for the two classes of input pate

The phase of some example patterns as well as the learnetitvaésgribution is shown in Figure 5. When this
experiment was performed with a Tempotron, the authorsddakt both training time and generalization error to
measure success. It is difficult to compare training timestincase because of the non-smoothness of the error
surface which requires modulation of the learning rate taiotihe fastest theta neuron network training time possibl
Empirical modifications of the learning rate during expegirts not included in this paper have verified this statement
and suggest that this method would benefit from more compledignt descent techniques such as momentum or the
Levenberg-Marquardt algorithm. However, as with all expents in this section, we use only a constant learning rate
in order to provide the simplest comparison possible.

Even though it is difficult to compare training times, oncairiing is complete (CE=0%) generalization error can
more easily be compared. Generalization error for this datas determined by looking at jitter. Jitter is some
amount of Gaussian noise added to the times of each inpud ppikern in order to observe the effect on classification.
Classifying correctly in the presence of noise indicated the network has generalized the input pattern since it is
able to classify correctly with similar inputs to the tradhenes. Normally generalization is determined by examining
the network response to testing data which has not beengugyiused for training. For the spike latency data set
there is no explicit underlying function from which to geatrthe testing data since the training has been created in a
random way so we rely on jitter to examine generalizatioteiad.

In Figure 6 we compare the jitter results for spike laten@ssification with that of the Tempotron. Our input spike
time range is 2 ms to 8 ms while our output spike times are 20md24 ms for the two pattern classes. The amount of
added jitter was normalized over the input spike range ieota produce a fair comparison between our method and
Tempotron learning. The results show that our proposedilegurule can reproduce the Tempotron training results
and with better generalization error. Our model can hanldst two orders of magnitude more noise while staying
within generalization errors of 10%. One possible explamdor this result is that the activity-dependent thresliva
property of theta neurons is acting to suppress the jitteilai to what was done in (McKennoch et al., 2007).

We also examined the case where training was allowed torampast the point where 0% classification error was
achieved, in this case 7% longer. For low values of jitteis tietwork exhibited lower generalization error than
the previous theta neuron result. However, this networl si®wed some initial signs of memorization rather then
generalization, meaning that it was starting to becometiaed. This balancing of memorization and generalizatio
is common to standard rate coded neural networks and is tedeeted in theta neurons as well.

In other spike latency experiments that were run with 5 ombut synapses, rather than 500, the load was varied in
order to determine the critical storage capacity)( The critical storage capacity is the maximum load at whieh
network can still learn all the input patterns’ classest{@&& Sompolinsky, 2006; Li & Harris, 2004). Our estimated
value isa. = 2 for the theta neuron, equivalent to single-layer perceystend slightly less than that for the Tempotron
(wherea, =~ 3). A different choice of parameters perhaps might increbseheta neuron,., see for example the
effect of the output spike interval in the following section

5.3 Machine Learning Classification Problems

Three classification problems or data sets were tested tiseétg neuron networks, the binary XOR problem, the
Fisher Iris data set and the Wisconsin Breast Cancer datd’kese experiments are of increasing complexity. The
XOR problem is very simple and used to examine the choiceshtimber of hidden neurons as well as the desired
output spike times. The other two experiments are more camplth the results being compared to other related
neuron-based learning methods. In all cases satisfaatinirtg results were achieved. Online learning was used
rather than batch learning as it proved much more succestsévoiding local minima. MSE was measured relative
to the encoded desired output spike times and the actualiospike times. A small amount of normally distributed
noise was added to the initial weight value,,; on each synapse in order to avoid local minima created by strym
Experimental parameters, including the spike time valhas input and output spikes are mapped to, are given in
Table 2. These parameters were largely chosen empiriddfiyvever, the discussion that follows in this section as
well as Sections 5.4 and 5.5 develops a methodology for éhgapike mappings and other parameters.
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(a) Complete Phase PlotThe output spikes for (b) Area of Phase Modulation. The period of

all patterns shown fall on the desired side of the  time during which input spikes arrive is shown.

class decision line (the vertical line marked with The reference spike occurs at 1 ms. Class 1 pat-

'X'). terns spend more time above the above the pos-
itive fixed point, while class 2 patterns spend
more time below the positive fixed point thus
causing them to produce later output spikes as
desired.

Figure 5: Spike Latency Performance. The phase and weight distribution of a single theta neurah@vn in
response to four spike latency pattern. There are 500 inmapses. Input spikes arrive between 2 ms and 8 ms.
Patterns 1 and 2 belong to class 1 and have a desired outketispe of 20 ms, while patterns 3 and 4 belong to class
2 and have a desired output spike time of 24 fi3s-0.005, the initial weight valueu;,,;) is 0.01 and;,,=4.25e-11.
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(c) Learned Weight Distribution. The weights
form a normal distribution around zero with a
slight skew towards positive weights. The slight
positive skew ensures that output spikes will not
be canceled. The single outlier is the weight as-
sociated with the reference input. As the number
of inputs increases, the magnitude of the learned
weights decreases as each input spike needs to
effect the output spike time less and less.

Figure 5:Spike Latency Performance.(continued)
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Figure 6: Jitter Comparison to Tempotron. A single neuron is trained with the method proposed here gritidy
method in (Gutig & Sompolinsky, 2006). The number of symegpand input patterns is 506 (= 1). 1,=-0.005
andw;,; = 0.01. For the theta neuron, training is stopped when classificairor becomes zero. The theta neuron
is shown to be much less sensitive to higher levels of jittelidating better generalizability than the Tempotron.
There is one pattern near the decision boundary (becaussfidation error has just reached 0%) that is especially
sensitive to low levels of jitter. In fact, this one pattesritie only one that gets misclassified until the normalizet ji
reaches about- 103, Training the network 7% longer after 0% classification elvas been reached delays the first
appearance of an error from a normalized jitteB&f- 10~"to 1 - 1073.
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Table 2: Machine Learning Classification Experiment Overview This table contains parameters for the machine
learning classification experiments.

XOR Fisher Iris ~ Wisconsin Breast Cancer
Inputs 0,1 [0,79] [1, 10]
Input Spikes 3ms, 6ms | [2ms, 8ms] [2ms, 8ms]
Output Spikes 20ms, 30ms [20ms, 30ms]| [18ms, 28ms]
Outputs 0,1 0,1,2 2,4
Learning Rate le-6 le-6 7e-8
Baseline Current -0.005 -0.005 -0.005
Initial Weight 0.01 0.01 0.01
Number Hidden Neuronsg 5 8 8
Online vs. Batch Online Online Online
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Figure 7: Hidden Neuron Analysis. This plot shows the effects of varying the number of hiddearaes, N, on

the XOR problem. The dataset is trained to 0% classificatioor avith 7,,=1e-6,1,=-0.005 andw;,,;=0.01. AsSN
increases, the computation time per epoch (the actual ORb tiaken to perform the necessary calculations) also
increases as expected since the number of parameterseadimgy. The number of epochs needed for training has
a minimum atN = 5, where there are neither too many nor not enough trainabbamers to perform the XOR
computation.

Our first machine learning experiment was performed on thele binary XOR data set. XOR is a simple but
important problem in machine learning in part because tta pattern is not linearly separable. In the experiments
performed, all four data patterns are correctly classifibémthe MSE is at about 2, but further training allows better
separability and tolerance to noise. The number of hiddemams, N, was varied in order to determine its optimal
value. This best value @Y is tied to the dataset complexity. Figure 7 shows the contiputéime and training epochs
asN is varied. To minimize the number of training epochs, weléet 5. Using the parameters in Table 2, XOR is
trained to an MSE of 0.05 in 2524 epochs, and a classificatiam ef zero in 240 epochs.

For the XOR problem, we also examined the effect of tramaladind dilating the desired output spike times in order
to examine its effect, and also determine if there is an agdtgpike interval. The results are summarized in Table 3.
For translation of the output spike interval, earlier valuesult in quicker training times, up until of course thelihp

spike interval (3 to 6 ms here). Later output spike times irequsmaller learning rate (and thus slower training) since
the phase is getting pushed closer to the positive fixed poiathieve the slower time constant. For dilation, there
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Table 3:Effect of Output Spike Times on XOR Training. In this comparison of training results between different
output spike times for the XOR problem, a multi-layer the¢aumon network with 5 hidden neurons,=-0.005 and
w;n;=0.01 was used in training to a Classification Error of 0%. Mighest learning rate possible such that the system
remained stable was used in each case. To force the outpattgpes to occur later, it is necessary to push the phase
closer and closer to the positive fixed point. As a result, allenlearning rate is required to ensure that the neuron do
not stop firing altogether.

TRANSLATION DILATION
DESIRED OUTPUT DESIRED OUTPUT
SPIKE TIMES EPOCHS SPIKE TIMES EPOCHS

6.116.1 140,1,,=8e-5 20, 22 200,1,=165
10, 20 210,7,=3e-5 20, 26 200,7,,=6€-6
15, 25 240,7,,=5e-6 20, 28 540,7,,=4e-6
20 30 240,7,,=1e-6 20 30 240,7,,=16-6
25, 35 310,7,,=3e-7 20, 32 240,7,,=1e-6
30, 40 1780,1,,=3e-8 20, 34 300,7,,=5e-7
35, 45 2900,7,,=7e-9 20, 40 360,7,,=2e-7
40, 50 >30000,7,,=2e-10| 20, 45 1400,7,,=3e-8

is a dynamic equilibrium with later spike times harder tartrdout more widely separable classes easier to classify.
Once the upper class becomes late enough, then the secentiddminates and training time begins to increase.
Thus the spike interval can be chosen without too much calengsas the upper output spike time is kept as small
as possible. Regarding the learned weight distributionyasthe case with the Tempotron experiment, the learned
weights have a normal distribution with a slight skew to flesiweights. The spread of the distribution decreases as
the output spike range increases where smaller, more pre@ghts are needed to realize the desired input-output
relationship (and therefore a smaller learning rate ag)w&lthough this discussion was specifically applied to XOR,
which is a classification problem, the same logic shouldyafiptegression problems, in the sense that they are like a
classification problem with an infinite number of classeg @aviexed range. Indeed, in Section 5.4, we shall show how
the choice of the spike interval relates to the dynamics@hiuron through its response curve.

Table 4 contains classification results on the Fisher Inib\&isconsin Breast Cancer data sets for the proposed lgarnin
rule in comparison to other neuron based methods. The Hisbelata set consists of four iris attributes such as petal
length and a single output that indicates which of thregyges has been measured. The output classes for the Fisher
data set include both linearly and non-linearly separabta.dThere are 150 data patterns total, of which we used
100 for training data and the remaining 50 for testing dathe Wisconsin Breast Cancer data set was originally
developed by Dr. William Wolberg to study fine needle aspiratytological diagnosis. This data set contains 699
training patterns, each of which has 9 attributes (such bhsigeleus area and symmetry) and a single output that
determines whether the tumor was malignant or benign (WglBeMangasarian, 1990). We used 599 patterns for
our training data, and the remaining 100 for our testing.d&ath datasets were obtained from the UCI Machine
Learning Repository (Asuncion & Newman, 2007). For bottadats, our learning method classifies much better than
the methods we compare it to, even achieving perfect cleasdn for the Fisher Iris data set. These data sets are very
popular in the machine learning community. For example camepaper on Bayesian Classifiers acheived 94.87%
training accuracy (Kotsiantis & Pintelas, 2005) with thetér iris dataset and one on Support Vector Machines
achieved a 99.33 % training accuracy on the same dataseh@Z&d-ukushima, 2007). However, the most fair
comparison for our results is to other neuron-based legmmiethods, especially spiking ones.

5.4 Machine Learning Regression Problems

Regression problems are well-suited to neural networkgaltize networks’ ability to generalize functions by inter-
polating between training data points. In order to achieverg small MSE, the training performed in this section
actually temporarily pushed the neuron phase into thectfraregion below both fixed points. Additionally, some of
the hidden neurons occasionally failed to fire when presintth certain training data patterns. If the hidden neuron
fails to fire for all training patterns, then it is effectiygbruned from the network and will have no impact on the
output spike time. However, if the hidden neuron fires for edraining patterns and not others an additional degree
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Table 4:Classification Results (%) In this comparison of classification results between dhife training methods,
1,=-0.005,w;,;=0.01 andn,,=1e-6 and 7e-8 for the Fisher Iris and Wisconsin Breast Qathata sets respectively.
Results for SpikeProp and rate coded model Error BackpmitpagA (BP A) are taken from (S. Bohte et al., 2000)
while results for Dynamic Synapse SNN are taken from (Betdte et al., 2006). The network size used in BP A
is inflated to match that of SpikeProp. The network size in BB Beduced to the network size of the theta neuron
network, and thus has the same number of trainable weigheaull Matlab parameters for Backpropagation and
normalized inputs and outputs were used for training withBBP

LEARNING NETWORK | EPOCHS | CLASSIFICATION
METHOD SIZE TRAIN TEST
Fisher Iris Dataset
SpikeProp 50x10x3 1000 97.4% | 96.1%
Dynamic Synapse SNN 4x10x1 Unknown | 96% 97.3%
BP A 50x10x3 2.6e6 98.2% | 95.5%
BP B 4x8x1 leb5 98.0% | 90.0%
Theta Neuron BP 4x8x1 1080 100% 98.0%

Wisconsin Breast
Cancer Dataset

SpikeProp 64x15x2 1500 97.6% | 97.0%
Dynamic Synapse SNN 9x6x1 Unknown | 97.2% | 97.3%
BP A 64x15x2 9.2e6 98.1% | 96.3%
BP B 9x8x1 le5 97.2% | 99.0%
Theta Neuron BP 9x8x1 3130 98.3% | 99.0%

of freedom is produced, effectively creating a variable $idden layer. One use of this variable size hidden layer was
shown in Figure 3. The network is able to create similar otgtfur the cosine function in response to widely-separated
inputs by having non-firing hidden neurons (in the secontepat

As was the case with the classification problems, the prolsiets are not presented in terms of spike times thus a
mapping must be performed to transform inputs and outpugstbfrom spike times. In the previous section we
performed this mapping empirically. We now use a linear niagbetween the dataset input or output space and
the range of input or output spikes. The mapping ranges aegrdimed by the neuron dynamics as revealed in the
response curve. Recall that the response curve is a plotiéabnstrates the effect of an input spike on the output
spike time. For the case of negative baseline currentsgifitst input spike arrives very early on, it has the most
effect. For example, for a typical weight connection, aruirgpike arriving at 0 ms will alter the output spike time by
30 ms from the baseline firing time while an input spike angviater on at 20 ms will only alter the output spike time
by 5 ms. In these cases, the baseline current is chosen satdhéhbaseline firing timé g, is about 56 ms. From
this observation, it is reasonable to chose an input spikgeraf 0-20% ot ... A similar analysis can be performed
for output spike times resulting in a range of 20-50% ©f being useful for the desired range of output spike times.

The first regression problem we trained on a theta neuronarmktis the cosine function. While training the cosine
function, if batch training is used with a low learning raie;7 or less, the network becomes stuck in a local minimum
where the cosine function is approximated by a best fit-Briggrizontal line passing through the origin. Using online
training, the network is able to recover from this local minim (as occurs frequently with rate coded networks as
well). Once through this local minimum, learning proceeaisidly for half the cosine, and then more slowly for the
other half. Using 8 hidden neurong,=2e-6,1,=-0.005 andw;,,;=0.01, cosine is trained to an MSE of 0.05 in 300
epochs. The number of training patterns was 60 while the rumbtesting patterns was 10. In both cases, patterns
where generated by randomly choosing a number in the inpgeraf 0 ta27 and simply taking the cosine of the input
to generate the desired output. The MSE for the test poiats (ghtterns not directly trained on) is highly proximate
to that of the training points. This low MSE indicates tha thetwork is interpolating between training patterns in
such a way that the general cosine function is being leaagedpposed to the case where there might be non-smooth
erratic behavior between training points.
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Table 5:Machine Learning Regression Experiment Overview This table contains parameters and training results

for the machine learning regression experiments.

Cosine Sexton5
Inputs [0, 2n] [-100, 100]
Input Spikes [2ms, 8ms] [2ms, 8ms]
Output Spikes [20ms, 28ms]| [20ms, 28ms]
Outputs [-1, 1] [9.9e-59.9e5]
Learning Rate 2e-6 4e-6
Baseline Current -0.005 -0.008
Initial Weight 0.01 0.01
Number Hidden Neurons 8 8
Online vs. Batch Online Online
Epochs to MSE of 0.05 | 300 545
x 10° NECO-09-07-610-Figure-8a o5 NECO-09-07-610-Figure-8b
: o TN‘N Train : ' : ;Training
* TNN Test ---Testing
—Actual 9 |
5,
L
> 0 n
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-5 ]
8,
0%,
-10 ‘ : : , 0 : : : :
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(a) Sexton 5 Regression Result8oth the test-
ing and training patterns are in high agreement
with the Sexton 5 function.

(b) Sexton 5 MSE Results. Testing data was
generated every 10 epochs.

Figure 8:Sexton 5 Training. 1,=-0.008,7,,=4e-6, andv;,;=0.01.

A more difficult regression problem is the Sexton 5 functign=( = — 22), which has a flat section around x=0. As
with cosine, a best-fit line local minimum exists. Once tlylothis local minimum, half of the function trains rapidly
while the other half trains much more gradually. Figure 8vehthe regression results and MSE results. Using 8
hidden neurons;,,=4e-6,1,=-0.008 andv;,;=0.01, Sexton 5 is trained to an MSE of 0.05 in 545 epochs and%a

of 0.01 in 936 epochs. Again, the MSE for the testing dateciaugis good generalizability.

5.5 Parameter Sensitivity

In previous sections we examined the importance of choagipgopriate input and output spike mappings relative to
the neuron dynamics. We continue in this section to exanhireztother parameters that are also important to network
training: the baseline current,), initial weight value {v;,,;) and the learning rate(,). In order to better quantify

the relative sensitivity to each parameter, we train a redwspike latency pattern classification data set and a delay
regression data set. These data sets are simple and qurekitceind yet are complex enough to be indicative of the
effects of the parameters under study. In reality, thereeangplex interactions between these parameters, thus these
sensitivity experiments should be viewed with appropréatetion. The networks we used all had 3 hidden neurons
and unless otherwise specifiedd=-0.005,w;,;=0.01 andy,,=3e-7. The reduced spike latency pattern classification
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problem had a stopping criteria of 0% classification errdre iumber of input patterns was 10, and the load was 1.
The output spike times for the two pattern classes were 20nif4 ms (see Section 5.2 for more details). For the
delay regression problem, input spike times were trainaddp linearly to the output spike range of 16 ms to 28 ms.
The training and testing set sizes were 30 and 10 input pattespectively. The stopping criteria was an MSE of less
than 0.1. In both cases, input spikes were generated fromta@ Bims.

Recall that wherl, > 0, the neuron undergoes tonic spiking at some frequencyrdeted by/,. Whenl, < 0, a
resting equilibrium appears and the dynamics of the neuesoie richer as the phase may evolve in either direction
depending on the region it is in. In all the previous experitasave have taken advantage of these richer dynamics by
using neurons with exclusively negative valued nfAs part of our examination df,, we vary this parameter through

a range of both positive and negative values. The magnitikleqt relatively small because the theta neuron model is
valid only when the neuron is near bifurcation, meaning fhas close to zero.

Figure 9(a) shows the training resultsgds varied over a region whetg is close to zero and the number of epochs
required for training is less than about 8500. The minimumbioth data sets occurs whdp is approximately -
0.0055, which corresponds tg;, ~ 54 ms based on (4.0.2). For the regression data set, the abtepsdues ofl,

are in a very narrow range around this minimum. The spiketatelata set has a wider range of acceptabhalues,
including some values whet® is positive. Asl, approaches zero, the phase ceases changing over time anless
input spike is recevied. Thus there are three minima on tbe phe corresponding to an optimal valuelgfbeing
negative, one positive, and one whégds zero meaning that the dynamics are determined by spikgslois likely

that the demand on the network is higher for the regressitmsid, and therefore the neuron dynamics when 0

are not sufficient enough to allow the network to be trained.

As n,, is increased from near zero, the number of training epoctiedses exponentially as shown in Figure 9(b). At
some point, the learning rate becomes high enough that tlihtsenake too large of a jump, and the output neuron
may stop firing. The closer that the learning rate can be mtv#ds point, the faster than the network will train.

Finally, if w;,; is chosen on the correct order of magnitude as the final tlavesghts, then training may proceed
much more quickly. As a good heuristic, consider choosirg such that the initial output spike time will be in the
middle of the output spike range for an average input patfBsraccomplish this task, consider the inputs as a single
input occurring at a mean input time which passes into asihiglden neuron with synaptic weight,,; N. Likewise,
group the output neurons together with a single weight P. Training can then be performed on this simple multi-
layer two neuron, single output network. A differant,; can be assigned to each layer of the final network, or an
averge can be taken of the hidden and output laygs to be used on the entire final network. Note that as the number
of input synapses increases, the size of the weight shocledse to preserve a constant initial output spike time. For
the delay networky;,,; for the hidden weights is found to be 0.0053 and for the sptenicy 10-pattern classification
data set, an initialv;,,; of 0.0053 is found. Both of these values agree approximatilythe center of the range of
acceptable values faw;,,; in Figure 9(c).

From the experiments to date, including some not publishéllis work, a few observations on training theta neuron
networks can be made. As with rate-coded networks, the mit@lly drops off rapidly and then slowly approaches
a minimum on the error surface. The shape of the MSE vs. epngive is a function of gradient steepest descent
training, so a similar MSE curve to that obtained using ided networks is to be expected. Also similar is the
fact that online training helps prevent the network fromtiggtstuck in local minimums (such as best-fit lines for
regression problems). A problem specific to spiking neuisrgpike loss. As was discussed in Section 5.4, in the
hidden layer spike loss can be beneficial by creating a Varisibed hidden layer, but in the output layer spike loss
can prevent training from converging.

6 Conclusion and Future Work

We have demonstrated that the dynamic properties of nean@nsufficient to sustain universal type computations,
without the need to rely on the precise shape of PSPs. Althohig result does not mean that the dynamics of
synapses have no effect on time-based computations, ol deononstrates that computations can be carried out
without relying on this level of description, and our compan to other models suggests that it is more efficient to
do so. Computations were performed by networks of thetaamsutrained using a learning rule based only on the
intrinsic neuron dynamics, with highly simplified synaptierrents. In this way we have defined a time code that is
adapted to the natural dynamics of neurons and potentia#lg less neural hardware for calculations because of the
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Figure 9:Network Parameter Training Sensitivity. Unless otherwise specifiedl,=-0.005,,,,=3e-7 andw,,,;=0.01.

As the parameters are decreased, training times increadaajly. However, when parameters are increased, neurons
may stop firing during training in a non-recoverable way. therspike latency data classification data set, the demands
on the neuron dynamics are simple enough that training isipleswhen/, > 0 and when/, = 0 corresponding to
dynamics determined only by input spikes.
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synaptic simplification and lack of multiple delay connens (Lengyel, Kwag, Paulsen, & Dayan, 2005). The theta
neuron model dynamics also allow for longer computatioinatscales as determined by the neuron response curve
rather than the much quicker synaptic dynamics.

Our learning rule takes advantage of both the non-lineanitst the simplicity of the theta neuron model. Using
analytical expressions for the neural dynamics, we demedatively simple expressions for the error gradient. In
our simulation experiments, we showed that the performahtigeta neuron networks compared favorably to other
spiking neuron learning methods when given appropriateitrg parameters. Our learning rule demonstrated much
higher generalization in a spike latency pattern classifinaask than did the Tempotron model. Training on typical
machine learning problems produced classification resiusin most cases exceed the performance of SpikeProp
or rate coded models trained with standard BackProp. Ouk was demonstrated that networks of theta neuron are
capable of performing interesting and complex calculaiosing only the intrinsic neuron dynamics and are able to
overcome the limitations of comparable learning techréque

In further research, theta neuron networks could be adapteasupervised learning, different types of network struc
tures, recovering non-spiking neurons, delay learninglaaching rate heuristics. The gradient calculation codd b
expanded to use a natural gradient approach to accountéod@pendencies between synaptic weights (Amari, 1998).
Similar gradient-based learning could be applied to Izhiit@s simple neuron model, which is two-dimensional, but
capable of modeling a broader range of neuron behaviorg@vich, 2006). It is not clear that an analytic solution
exists for the error gradient in this model, but a slower nticaé solution for the error gradient could also be used
for training. We are currently pursuing expanding the leagrule to accommodate more than one input or output
spike per synapse. In this way, complex input and outpuespéin mappings could be achieved, opening up exciting
applications in performing computations on natural sigffi@m electrode recordings.
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