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Abstract - In this paper we develop and analyze Spiking Neu-
ral Network (SNN) versions of Resilient Propagation (RProp)
and QuickProp, both training methods used to speed up train-
ing in Artificial Neural Networks (ANNs) by making certain
assumptions about the data and the error surface. Modifica-
tions are made to both algorithms to adapt them to SNNs.
Results generated on standard XOR and Fisher Iris data sets
using the QuickProp and RProp versions of SpikeProp are
shown to converge to a final error of 0.5 - an average of 80%
faster than using SpikeProp on its own.

I. INTRODUCTION

In recent years, the field of spiking neural networks
(SNNs), a machine learning technique similar to traditional
artificial neural networks (ANNs), has experienced an
increasingly large amount of research attention. SNNs have
been shown in theory to be at least as computationally pow-
erful as ANNs, in part because of their ability to process and
be trained on signals with a temporal component [8]. In [1], a
training method analogous to error back-propagation for
ANNs is developed for SNNs and is called SpikeProp. Fur-
ther work has expanded on SpikeProp by verifying the deri-
vation [10] and by investigating the effects of adding a
momentum term to the SpikeProp algorithm [17]. 

In the case of supervised learning, a predescribed set of
inputs and outputs, along with a training method are used to
train the network to behave in a certain way. Spiking neural

networks differ from traditional artificial neural networks in
that the signals they process are pulse-coded rather than rate-
coded. Feed-forward ANNs take in constant input values and
instantly produce an output. Training methods such as stan-
dard error back-propagation and the faster RProp and Quick-
Prop adjust the weights contained within the network to
produce desired results [11]. 

A benefit of neural networks compared to classical
machine learning techniques is the ability to generalize. That
is, given inputs similar to inputs in a training set the outputs
should be similar to the trained outputs. This result is exactly
what occurs in neural networks. Some training methods such
as error back-propagation use a local error gradient to
approximate the global gradient and the traditional optimiza-
tion process of steepest descent. 

RProp is one of a number of learning rate adaptation tech-
niques where the rate at which weights are adjusted is deter-
mined by the success of the previous change and other
related factors. To the best of our knowledge, this paper is
the first attempt to adapt RProp to SNNs.

QuickProp uses Newton’s method for minimizing a one-
dimensional function, the error-gradient in this case, to
attempt to take one big step to the minimum. QuickProp then
makes appropriate adjustments when the minimum is not
directly reached. The work in [17] investigates QuickProp in
terms of SNNs. Their approach, however, deviates from the

Fig. 1. Spiking Neural Network Diagram

SNNs possess greater biological realism than their ANN counterparts. Inputs to SNNs are pulse-coded. These spikes propagate
through the network, effectively charging up neurons and eventually causing them to release their own output spike. Static delays in
connections between neurons also play a role.
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original QuickProp algorithm quite a bit as demonstrated in
their equation 19. In this paper, we make adjustments to the
QuickProp algorithm, but stay closer to the original concept
behind QuickProp.

Instead of using rate-coded signals, SNNs use pulse-coded
signals, which is a closer model of actual biological neurons.
By incorporating this additional biological realism the power
of SNNs increases dramatically. In [10], it is shown that
SNNs are at least as computationally powerful as ANNs for
learning any given function. SNNs are well-suited to process
both analog and digital outputs [16]. SNNs are especially
well suited to process natural signals that develop over time.
For example, by using pulse-coding instead of rate-coding,
SNNs are able to multiplex information such as frequency
and amplitude of sound [6].

SNNs take trains of spikes as inputs. Once a neuron
receives an input spike, that input connection begins to
charge up according to the spike-response function, .

(1)

 Subscripts i and j and superscript k signify that this is the
spike response between neurons i and j with delay k. As in
[1], we create a number of connections between each neuron
pair, each having its own static delay, d. This arrangement
allows for a number of different weight-delay combinations
with only having to train the weights.  is the time constant
that helps determine how quickly a neuron will respond to an
input spike. 

The spike-responses for all of the inputs are modulated by
weights and delays before being combined at a neuron
according to the neuron state variable equation, ,

(2)

where  is the set of input neurons to neuron j, and ti is the
time of the input spike from neuron i to j. 

 Once this combination of signals exceeds an activation
threshold, , the neuron is activated and produces an output
spike at time tj.

(3)

Just as in feed-forward ANNs, the spikes are propagated
from layer to layer and eventually result in a time series of
spikes at the output layer. Figure 1 gives further detail on
how SNNs process signals.

One major distinction between types of SNNs is in regard
to the number of times a neuron can fire. If a neuron can fire
only once, there is no need to model what happens to a neu-
ron after it fires, thus greatly simplifying the mathematical
modelling. In the more complex case, if a neuron can fire
more than once, then typically a kernel is used to model the
period of absolute and relative refractoriness. Refractoriness
refers to the inability of a neuron to immediately fire again
once it has initially fired [16]. The original version of
SpikeProp was developed for SNNs that fire only once. In

[2], a modified version of SpikeProp that can train SNNs in
which the neurons can fire multiple times is developed. This
type of SNN is more efficient at learning and takes more
fully advantage of the temporal information processing abil-
ity of SNNs.

Other researchers have also tried to speed up SNNs. For
example, in [13] and [14], they develop methods for training
the delays, activation threshold, and response curve time
constants in addition to the method already developed for the
weights. The method requires many less neurons, since mul-
tiple neurons with static delays are needed when delays are
not trained in order to accommodate different weight/delay
combinations.

In [17] they experiment with using a momentum term to
speed up the results. Momentum is typically used to help
move out of local minimums on the error surface by taking
into account previous movements on this surface. We also
use momentum in this paper in combination with RProp and
QuickProp.

The field of SNN research as it relates to actual biological
neurons has been well-studied and is very mature [9], [3].
Typical problems include developing models to functionally
simulate parts of the brain. Another example is better model-
ling of the neuron itself as it relates ion concentrations, rather
than a whole network of neurons. The engineering perspec-
tive, as with ANNs, is to pragmatically use SNNs to perform
engineering tasks regardless of strict biological realism.
Training algorithms, such as SpikeProp, have little relation to
what actually occurs in biological neurons, but nevertheless
they achieve the desired result.

This paper applies the principles of RProp and QuickProp
to the original SpikeProp algorithm in order to establish
meaningful baseline comparisons. RProp and QuickProp
could also be applied equally well to the training methods
used in [13], [14] and [2], which is left for future work.

In Section II of this paper we discuss and derive parts of
the original SpikeProp algorithm, RProp, QuickProp and the
combination of SpikeProp with RProp and QuickProp.
Section III details how we set up our SNN simulation, and
the reasoning behind our choice of parameters. Section IV
contains simulation results and analysis of the SNN trained
with regular SpikeProp, RProp and QuickProp on the XOR
data set and a simplified Fisher Iris dataset, as well as equiv-
alent results generated in an ANN trained with the same
methods. Summary and future work follow in Section V.

II. TRAINING ALGORITHMS

This section begins by summarizing the SpikeProp algo-
rithm. Next the learning-rate adaptation method of RProp is
described and analyzed for how best to combine it with
SpikeProp. The same description and analysis is then pre-
sented for QuickProp.

A. SpikeProp

SpikeProp, derived in [1], uses the same weight update
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method as error back-propagation.

(4)

The calculation of the error gradient, however, is substan-
tially different reflecting the nature of SNNs. Error is defined
by a sum of squared errors (SSE) as applied to the actual fir-
ing time , and the desired firing time , for neuron j, con-
tained in the set of output neurons, O.

(5)

As with ANN error back-propagation, the error gradient is
separated into separate derivatives.

(6)

The last two partial derivative terms are calculated by
making a linear approximation of a around t=tj. Using this
assumption, (6) reduces to the following, where  is a com-
plex function that differs for output and hidden neurons.

(7)

With momentum, (4) becomes the following, where  is
the momentum parameter.

(8)

SpikeProp is typically used as a batch method, where the
error gradient for each input pattern is found and then
summed together to adjust the weights.

B. RProp with SpikeProp

RProp is short for resilient propagation. It is one of many
learning-rate adjustment algorithms for training neural net-
works. Other popular ones include Vogl’s Method and Delta-
Bar-Delta [11]. RProp is unique in that the learning rate
adjustments depend only on the sign of the gradient, not the
magnitude. If the error surface is highly non-linear and com-
plex, the gradient magnitude becomes unpredictable and is a
poor measure of how the learning rate should be adjusted. 

The learning rate in RProp is updated according to the fol-
lowing formulas in (9) and (10).

(9)

(10)

The first equation says that the learning rate can be

increased if no minimum is jumped over, and likewise if a
minimum is jumped over (resulting in a change of signs in
the error term) then the learning rate should be decreased as
the minimum is narrowed in on. The second equation simply
determines the direction to adjust the weights based upon the
direction to the minimum. In ANNs, choosing the initial
value of  is important to avoid node saturation. For addi-
tional details on RProp refer to [11], [12].

In order to combine RProp with SpikeProp, a number of
issues need to be considered. Some of these issues are
described in [10], where the SpikeProp algorithm is imple-
mented with details that were left out of the original paper,
[1]. One of the main difficulties we encountered was making
sure the parameters were set in such a way that at least ini-
tially every neuron fires. A neuron that does not fire makes
no contribution at all to the final result, greatly decreasing
the effective network size. In the worst case, if a whole layer
of neurons which only fire once, does not fire, the SNN will
fail to produce an output. Also for the once-firing SNN, after
a reasonable amount of time has gone by and the last input
neuron to another neuron has fired, if that second neuron has
not yet fired then it never will. If it were possible for its input
neurons to fire again, then a future firing would still remain
possible. Thus in reasoning about using RProp and Quick-
Prop with SpikeProp, the most important consideration in
choosing setup parameters is to make sure that all input neu-
rons will initially fire and that non-input neurons will also
fire subsequent to the input neurons firing.

A neuron will not fire or will fire too late if its input
weights are too small, so it is desirable to decrease weights
slowly. On the other hand, if the weights get too large, the
neuron will fire immediately, effectively becoming saturated.
So weights should increase slowly as well.

In this work, we initially propose  = 1.2 and  = 0.5 as
RProp parameters that meet this criteria. Rather than specify
maximum and minimum values of  as is normally done
with RProp, for SNNs it makes more sense to look at maxi-
mum and minimum values of input weights. If these limits
are exceeded,  is not changed. Working from (1), (2),
and (3), we derive: 

(11)

(12)

The variables tmin and tmax are the minimum and maxi-
mum change in time allowed between when a neuron
receives an input spike and when it produces one, after any
applicable delay.  is the number of delay connections
between any two neurons.  is the number of input neu-
rons for a given layer. As an example, the XOR values given
in Table 1 are used, with tmin=0.1 and tmax=10. These values
are based on network size and input and output spike-time
range. Note that the times are relative to the firing time of the
previous layer. Using these values, wmin = 0.08 and wmax =
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2.04. Equations (11) and (12) are used to initialize the net-
work weights as well. In erring on the side of caution, we ini-
tialize our weights with a normal distribution of:

(13)

(14)

Simulations described in Section IV show the result of
using a number of different learning rate values.

C. QuickProp with SpikeProp

QuickProp is a training method that tries to approximate
the global error surface by examining the local one for each
weight. There are two underlying assumptions:

• The error for each weight can be approximated by a
parabola opening upward.

• The second derivative of the error with respect to one
weight is not affected by the other weights that change at
that time.

Given these assumptions, Newton’s method for minimiz-
ing a one-dimensional function is used as follows:

(15)

(16)

Equation (16) uses a finite-difference approximation to
calculate the second derivative. Specific rules are used in
addition to this equation to prevent infinite steps or steps up
the error surface, which can take place when the original
assumptions are violated. For example, when 
and  have the same sign, then a simple gradi-
ent descent term of  is added to (16). A variety
of other add-on heuristics are used to further speed up train-
ing and prevent saturation. For additional details on Quick-
Prop refer to [5], [11].

In applying QuickProp to SNNs it is useful to consider the
sensitivity to weight changes on the error. Sensitivity calcu-
lations are also used in network pruning algorithms. For a
sigmoidal ANN, sensitivity assuming one input neuron is:

(17)

Regardless of the initial value in w, any change from that
initial value on a will be bounded. For SNNs, if we use a
first-order Taylor series approximation of the exponential in
(1), the sensitivity becomes:

(18)

Thus we see that for small initial weights, changes to these
weights can have a large impact on the output firing time.
QuickProp bases the current weight change on previous

weight changes, which can have the effect of amplifying this
sensitivity. In our experiments we have found the following
changes to be helpful:

• Multiply  by a factor between 0 and 1 to diminish its
effect.

• In the case where the risky assumptions have been vio-
lated (the current gradient and the previous gradient have
the same sign, and the current gradient is larger or the
same size than the previous gradient), set =0 rather than
using a maximum growth factor to limit growth.

These changes ensure that changes to the output firing
time happen at a measured pace and decrease the likelihood
of moving in the wrong direction from the error minimum.
Weight initialization takes place in the same way as that
described in Section IIB.

III. SIMULATION SETUP

Simulations of SpikeProp and its RProp and QuickProp
modifications described in Section II were conducted using
MatlabTM due to its ability to rapidly prototype. Functions
were built to create a SNN structure, to run a SNN (find the
outputs given inputs), and to train the SNN network based on
pure SpikeProp or its RProp or QuickProp modifications.

Two datasets were used. The first dataset was the binary
XOR dataset, in the form used in [1]. For the most part, iden-
tical parameters to those in [1] were used. Parameters used in
this test and the ones to follow are summarized in Table 1.
Where used in Table 1, the notation x:y:z refers to a range of
values that vary from x to z at intervals of y. The notation
used for network size refers to the number of neurons in the
input, hidden, and outputs layers. Weights were initialized as
discussed in Section II with the additional rule that 10% of
the weights were chosen to be inhibitory (negative) initially.
We place no restriction on mixing inhibitory and excitatory
weights. Further biological realism dictates that because
these connections in nature are generally separate, they
should be separate in our networks as well. However, we’ve
not found any deleterious effect from mixing the two types. 

Because of the simplicity of the XOR dataset, no coding is
needed. Rather spiking times at 0 and 6 represent the binary
values of 0 and 1 respectively. Likewise for the outputs, fir-
ing times 10 and 16 are assigned to be equivalent to binary
values 0 and 1 respectively. These times are chosen in [1] to
allow binary 0 and 1 to be easily separable and to allow suffi-
cient time for the signals to propagate through the network
based on other parameters such as .

Because the inputs to the Fisher Iris data set are not binary,
a more complex encoding scheme must be used than that
used for the XOR data set. As with [1] we use population
coding. In population coding, multiple local receptive fields
are used as a way of distributing the rate-coded input values
into multiple pulse-coded input firing times. We used four
overlapping Gaussian receptive fields evenly distributed
throughout the expected range of rate-coded input values to
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code each variable. For example, an input of 10, might pro-
duce a list of spike times of [7 4  ]. The last two recep-
tive fields in this case are not sufficiently activated and
translate to two input neurons that are not activated. Popula-
tion coding allows for a more efficient use of neurons, and
also has the effect of normalizing the input data. The use of
population coding for spiking neural networks has been well

studied [4], [18]. Other potential uses of population coding
include using Gaussian receptive fields of different sizes to
make the coding more insensitive to the scale of the input
data [1]. The outputs firing times 5, 10 and 15 are assigned to
be equivalent to the three iris types. These times are again
chosen to allow iris types to be easily separable and to allow
sufficient time for the signals to propagate through the net-
work based on other parameters such as .

IV. SIMULATION RESULTS

In [17], momentum was found to have an oscillatory effect
on error from epoch to epoch. We also encountered this
result, but also found that momentum helped the system con-
verge quicker on the whole. As noted in [11], momentum
increases the effective learning rate and can have a destabi-
lizing effect in ANNs. On average, however, we found that
simulations run with momentum, as opposed to those with-
out momentum, regardless of the training method used, con-
verged to an mean squared error (MSE) of 0.5 about 25%
quicker. 

Figure 2 and Figure 3 show plots of the same networks
trained with RProp over a variety of values of momentum
and simulation time interval. For all cases in these two fig-
ures, the error to which the network was to be trained was set
at 0.01, a relatively low value. Additional oscillation was
encountered when attempting to train a network to a very
low error. Error is measured in terms of spike timing. The
resolution to which spike timings can be measured is deter-
mined a priori by the simulation time interval. If a network is
attempted to be trained to an error level lower than the simu-
lation time interval allows, then the error will tend to oscil-
late back and forth between two values, without any overall
decrease in the error. Also, the time interval value affects the
path taken over the error surface. For higher time intervals,
steps taken are larger, which also increases the effective
learning rate, leading to not only decreased convergence time
but also decreased stability.

A comparison of typical MSE curves over different train-
ing methods is presented in Figure 4. RProp and QuickProp
training finishes approximately 80% quicker than SpikeProp.
This percentage holds across the many simulations we did.

The life history of a weight value is shown in Figure 5 that
is typical of the three training methods. As indicated, weights
more often decreased than increased, thereby increasing the

∞ ∞

TABLE 1: Network Simulation Parameters

XOR Fisher Iris

Inputs Binary XOR 
inputs with firing 
times 0 and 6 sig-
nifying binary 0 
and 1, plus a zero-
valued referenced 
input firing time

10% Random 
sample of the 
150 sample 
dataset using 
population 
coding

Outputs Binary XOR out-
puts with 10 and 
16 signifying 
binary 0 and 1

5; 10; and 15 
for the three 
iris types

Delays 1:1:16 1:1:16

Network Size [3 5 1] [16 7 1]

Sim Time 0:0.025:50 0:0.05:50

Tau 7 7

Activation 
Threshold

5 5

Alpha 0.1 0.1

BackProp 
Learning Rate

0.05:0.05:0.5 0.15

RProp Positive 
Learning Rate

1.05:0.05:1.5 1.2

RProp Negative 
Learning Rate

0.4:0.1:0.6 0.5

RProp Initial 
Del

0.01 0.01

QuickProp 
Learning Rate

0.05:0.05:0.2 0.1

τ

TABLE 2: Number of Epochs to 0.5 MSE with RProp on XOR data for values of  (horizontal) and  (vertical)

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 Mean

0.4 95 53 84 40 35 27 25 36 36 53 52

0.5 64 51 45 104 44 32 44 159 34 59 64

0.6 75 91 46 140 32 25 29 53 25 50 56

Mean 78 65 58 95 37 28 33 89 32 54

η+ η -



firing time.
As noted in Table 1, learning parameters were varied to be

able to analyze their effects on convergence in the SNN
domain. Table 2 displays the results for training with RProp
on the XOR data while the learning parameters are varied.
Each entry represents the average number of epochs for 10
different simulations. Generally, high positive learning rates
appear to help convergence along. It should be noted, how-
ever, that if we were to train to a lower error value, such as an
MSE of 0.01, higher learning rates would decrease the
chances of convergence. RProp is inherently an adaptable
learning rate training method, but the rate at which the learn-

ing is adapted could also be scheduled to decrease over time
to maximize early performance and also maximize the prob-
ability of convergence.

Table 3 and Table 4 summarize the results of training on
the XOR and Fisher Iris data set for both ANNs and SNNs
over all three training methods. Recall, SpikeProp is back-
propagation for SNNs. Each entry represents an average of
ten or more simulations generated with the range of learning
parameters described in Table 1. The exception is RProp,
which based on the results in Table 2 was generated using

 = 1.3 and  = 0.5. The results are compared to results
generated using ANNs. ANN results were generated using
the Qwiknet tool [7]. Identical network size and parameters
were used relative to the SNN training. A learning rate 0.1
was used for both QuickProp and SpikeProp. SNNs per-
formed an average of 68.5% quicker than their ANN equiva-
lents. Also, RProp and QuickProp are shown to train an
average of 80% quicker than back-propagation. RProp per-
formed slightly better than QuickProp for SNNs, while
QuickProp was much better than RProp was for the XOR
dataset and equivalent for the Fisher Iris dataset.

V. CONCLUSION AND FUTURE WORK

In this paper we have demonstrated the value of using
RProp and QuickProp algorithms in Spiking Neural Net-
works. We have shown that with only minor modifications to
the network parameters, these algorithms can be ported
directly from the non-spiking world. Quantitatively, we’ve
shown an average improvement over SpikeProp of 84.5%
and 76% respectively with RProp and QuickProp over two
standard data sets. We have also shown an improvement of
68.5% of SNNs over ANNs for all three training methods
discussed. The effect of momentum was briefly looked at in
the context of these training methods as were the impacts of

TABLE 3: Number of Iterations to 0.5 MSE with 
binary XOR dataset

ANN SNN

Back-Propagation 2750 127

RProp 386 29

QuickProp 51 31

TABLE 4: Number of Iterations to 0.5 MSE with 
partial Fisher dataset

ANN SNN

Back-Propagation 1370 222

RProp 76 25

QuickProp 79 53
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Fig. 2. MSE for the same network trained with RPRop with and without momentum and with time intervals 2.5 and 0.25

Decreased time interval in (a) to (b) decreases the effective learning rate, but allows the network to be trained to a lower error. The
time interval in (a) and (c) is too high to allow the network to be trained. In both (c) and (d), the effect of momentum is to increase the
learning rate, but to also decrease stability.

(a)

(c)

(b)

(d)
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weight changes and initialization.
In the future, we will would like to apply RProp, Quick-

Prop and a number of other standard ANN training algo-
rithms to increasingly complex SNNs. Such networks would
include those described in [14] where the delays and other
parameters are trained. Another example is the SNN where a
neuron is allowed to fire multiple times [2]. As neurons in
SNNs are allowed to fire multiple times they become much
more powerful, but also much more complex, thus showing
the need for faster, more powerful training algorithms.
Research into training the simulation time interval would be

beneficial as well.
We also hope to apply SNNs to the domain of communica-

tion learning in multi-agent systems. The strengths of SNNs
lend themselves well to this domain. More specifically,
SNNs are powerful machine learning tools (both supervised
and unsupervised) which are adept at dealing with natural
spatio-temporal signals. Also SNNs are very powerful at
handling event-driven systems of the kind found in multi-
agent systems.
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Fig. 3. MSE for the same network trained with RPRop with and without momentum and with time intervals 0.025 and 0.0025

Decreased time interval in (a) to (b) decreases the effective learning rate, and leads to slow convergence due to decreased stability.
Increased Momentum in (a) to (c) causes a slightly quicker initial drop in error, but at the expense of decreased stability and increased
oscillations. In both increasing the momentum and decreasing the time interval in (d), the forces on the effective learning rate balance
each other in a beneficial way, and convergence happens 27% quicker than in (a).
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Fig. 4. Typical MSE for networks trained with SpikeProp, 
RProp, and QuickProp

RProp and QuickProp both converge around 50 epochs, while
SpikeProp takes 227 epochs. Oscillations are due both to lack
of infinite time resolution and the presence of momentum.
Training parameters used were =0.1 for QuickProp and
SpikeProp,  = 1.2 and  = 0.5 for RProp.
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Fig. 5. Weight Lifecycle vs MSE

Weights were more likely to decrease than increase over the
training time. Changes in weight values often directly
translated into changes in MSE showing in part the large
sensitivity of error to changes in the weights.
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