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Abstract - This research effort is an investigation into com-
munication activity in a distributed set of software agents.
Agents exist in a predator-prey environment. Movements of
prey agents are evolved upon a Mamdani type fuzzy inference
system.  Probabilistic predation and starvation forces, along
with simulated communication activity act upon agents, caus-
ing them to cluster.  Examined here is the correlation between
mean cluster size after the population has sufficiently evolved,
versus the average agent communication activity. Communica-
tion activity creates a loyalty to remain in a cluster for security
rather than to change cluster membership. A mean r2 correla-
tion of 0.87 was observed with this system, thus lending cre-
dence to our hypothesis.

I. INTRODUCTION

The field of distributed robotics has been an especially
active field in recent years. Systems of distributed robots or
software agents offer the promise of efficiently solving
novel complex tasks in parallel either through explicit coop-
eration, competition or some combination thereof [8].

The absence of efficient communication abilities is a lim-
iting factor in scalability in terms of power-consumption
and wide-spread application of such distributed systems.
Under certain conditions, communication has been shown to
greatly improve the performance of multi-agent systems [5].
Thus efficient communication is an important current topic
of research in the application of multi-agent systems to a
variety of engineering tasks including distributed space
exploration and search and rescue tasks. Another recent
research effort from the fields of computer science, linguis-
tics, and animal behavior is the evolution of language [1],
[2], [6]. This paper combines ideas from these areas by ana-
lyzing and modeling ways group size affects communica-
tion activity in populations designed to mimic certain
aspects of primate behavior. The goal is to achieve a model
that reproduces results observed in nature, and analyze it for
clues on insights it might provide to the realm of communi-
cation in multi-agent systems in terms of engineering appli-
cations.

In general, communication, as defined by the transfer of
information, occurs in many venues in nature, including for-
aging, play, mating, aggression, and predation [2]. For pri-

mates in particular, communication is a reflection of our
membership in a community. By making us part of a com-
munity, we reduce our risk of predation, as there are more
eyes available to watch for suspect predators.  Selection
forces such as reciprocal altruism, where favors are
exchanged between group members, help protect members
of groups by warning of approaching predators and by con-
fusing the predator with multiple potential targets.  A group
is defined here as a collection of agents or organisms in
close proximity with each other relative to other agents.
Group size is largely a balance point between the inward
forces of predation and the outward forces of starvation
caused by high population density at the interior of these
clusters [3].   In nature, some of these overcrowding forces
have been dealt with by alliance formation.  An alliance is
defined as a coalition maintained over time for the purpose
of cooperative benefit. These alliances are maintained with
various forms of social interaction such as grooming and
vocal exchanges [2].  

One side effect of the appearance of alliances is the need
for agents to infer relationships between members, i.e. who
are they allied with, and who are they not.  This knowledge
allows members to then manipulate and calculate in advance
the potential effects that their actions might have.  Thus the
presence of alliances has a potential side effect of producing
more cohesive groups.

One specific consequence of this hypothesis is this devel-
opment of language in human ancestors. It has been conjec-
tured that group size was pushed upward in part by an
increased risk of predation as our ancestors invaded the
open areas. However, at the same time, the time required for
grooming in order to balance out starvation forces, was
becoming excessive.  Thus grooming may have in part
evolved into more efficient forms of communication such as
language in order to enable a further increase in group size
[3].

In this research we have taken advantage of a new tool
designed at the University of Washington to rapidly form a
simulation that models some of the basic conditions in
nature that relate to communication activity in primates.
This model is used to test out this theory that as group size



increases, so also does communication activity.

II. SIMULATION TOOL

This simulation has been developed using the Intelligent
Controls and Communication Evolution Simulator, IC2ES
(pronounced Isis). IC2ES is a work in progress and is built
upon results and lessons learned from a previous version
[7]. The simulator takes a graphical approach to simulation
design, whereby users drag and connect blocks that repre-
sent some specific function. Many blocks are pre-built into
the simulator, such as for example one to perform a simple
genetic algorithm. However, users can very easily add their
own blocks to the design tool. In addition, each block con-
tains parameters that are specific to the block that may be
edited. For example, in the case of the "Create Agents"
block, an editable parameter is the number of agents to cre-
ate. Users may access all editable parameters in one easily-
navigable window, or by clicking on a block and editing its
individual attributes. The parameter editing window for
each block allows the user to alter parameters managed by
the IC2ES block,  to view block inputs, outputs, and help infor-
mation, and to change the block appearance. Source blocks such
as "Constant" and "Create Environment" are available.
Conversely, sink blocks, such as "Write to Cluster Plot" or
"Write to Numerical Display" are available as well. This
feature allows the user to quickly create and monitor data.

IC2ES analyzes the block connections in the design,
checking for potential errors, and forms a simulation
sequence based upon the layout.  To allow for feedback, in
addition to normal sequential blocks, users have access to
For Loops.  Any block graphically placed in the interior of
the For Loop is executed a number of times based on the
editable parameters of the For Loop.  For Loop outputs are
fed back to the inputs upon each iteration of the loop. Figure
1 shows a typical loop configuration.

In addition to the design tab, another tab exists for analyz-
ing results.  For example, users can perform linear regres-
sion analysis on data to determine the goodness of a linear
fit, or users can playback a sequence of images showing the
population as it changes over time.  

Additional tabs can also be added to allow users to cus-
tomize what data they would like to view as a simulation is
in the process of running.  For example, multiple images
displaying agent location can be displayed where the color
of each agent is tied in with some other parameter such as
agent fitness or communication activity. Figure 2 demon-
strates this concept.

III. SIMULATION SETUP

Figure 3 shows the layout of this simulation.  Despite the
abundance of connections, the layout is quite straightfor-
ward.  The outer For Loop cycles through rounds, intervals
of which agents may be breed at.  The inner for loop cycles

through each agent, calculating their next move based on
their environment, updating their fitness level, enabling
potential communication activity to take place .  Initializing
blocks that create the initial agents and the environment are
placed outside the outer loop as one would expect.

Agents are controlled using a Mamdani fuzzy inference
system. Inputs to the fuzzy inference system are normalized
values of the distance to the center of the agent's cluster, the
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Fig. 1. A simple loop configuration in IC2ES

This loop configuration simply adds together two integers
upon each iteration.  The output of the addition is fed back to
be used as an input upon the next loop iteration. This
configuration functions as a count-by-n counter.

Fig. 2. Multiple images displaying agent location in IC2ES

Image plots allow the user to visually observe agent
population properties as they are updated throughout a
simulation.  For example, the plot on the lower right color
scales agent fitness to allow rapid visual correlation of fitness
and agent placement within clusters.
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number of sides on which an agent is surrounded by another
agent, the agent's total alliance values with other agents, and
the agent’s energy. The first two inputs are meant to give the
agent information on its risk of starvation and its risk of pre-
dation. The third input provides it with a compact history of
its communication activity.  The fourth input lets the agent
know how successful it has been in the past in resisting star-
vation. 

A Mamdani fuzzy inference system was chosen over

other types such as a Sugeno due to the simplicity of the
model.  Our fuzzy inference system uses Zadeh min-max
logic, and is defuzzified by the centroid method, which in
this case is in part trivial due to the discrete output behavior
primitives being used. These primitives that correspond to
one of the output of the fuzzy inference system are "Move
Toward Cluster Center", "Move Away From Cluster",
"Move Toward Cluster Edge", and "Do Nothing".  Agents
are assigned to be members of specific clusters based on
standard hierarchal clustering algorithms.  

A second output corresponds to the communication inten-
sity with which an agent will subsequently communicate
with nearby agents.  Alliance values are updated using this
parameter according to:

(1)

where Allianceab is the alliance value of agent a with agent
b when updating agent a; Dab is the Euclidean distance
between agents a and b; CIa is the communication intensity
parameter, and is a scaling factor based on the output of
agent a's fuzzy inference system; CD is the communication
distance, i.e. the distance beyond which communication
activity cannot occur.  Decay Half Life is the number of
moves that it would take the alliance to decay by half if the
agents were to continue to fall outside of each others com-
munication distance.  Figure 4 shows  typical alliance
updates based on this formula.

The end results of equation (1) is that agents that are
nearby to each other have alliances strengthened by the
highest degree, as would be the case in primates grooming
each other.  Agents that are not nearby to each other, possi-
bly in other clusters, eventually lose alliance with each
other.

Alliances have another effect in negotiating conflict.  If an
agent wants to move to a location occupied by another
agent, then the alliance between the two agents is surveyed.
If the alliance meets a certain threshold standard then the
movement is allowed and the agents will switch places.
However, if the alliance threshold is not met, then no move-
ment takes place.  

Subsequently, agent energy is updated according to:

(2)

where Energya is the energy of the agent; Closed Sidesa is

Fig. 3. Simulation connection layout in IC2ES

The entire mean group size vs. communication activity
simulation is dictated by the above layout. Two For Loops,
one inside the other, control the overall flow by managing the
agent movements.

IC2ES Block Layout

1 2 3 4 5 6 7 8 9 10
4

5

6

7

8

9

10

11

12
Distance vs. Alliance Value

Distance From Communicating Agent

A
lli

a
n

ce
 V

a
lu

e

Initial Value
After 1 Round
After 2 Rounds
After 3 Rounds
After 4 Rounds
After 5 Rounds

Fig. 4. Updated alliance values for agents at fixed distances 
from a communicating agent

For this plot Communication Distance (CD) is 5 and Decay
Half Life is 5. Agents within the communication distance have
reinforced alliances, while those outside the communication
distance have alliances that decrease towards zero.
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the number of sides, maximum of 8, where agent a is
adjoined by another agent; Predation Rate is a number, typi-
cally close to zero that controls the probabilistic predation
risk that agents are subject to; and Rand is simply a random
number generated with uniform distribution between zero
and one.  Equation (2) accounts for predation risk in the first
half of the equation in which there is a small, but present
risk of instant death, while the second half of the equation
accounts for the effects of limited resources on energy.  If an
agent has less than six sides surrounded by other agents,
then energy is added to the agent, otherwise it is subtracted.
Agents with energy less than or equal to zero, or with energy
less than or equal to forty percent that of the mean popula-
tion energy are removed from the population.

Agents are chosen to breed according to:

(3)

Agents are breed at intervals determined by the parameter
Breed Frequency.  Breed Frequency is the number of times
an agent will move before being given the chance to breed.
An agent must have a fitness that is better than %Breed
above the mean fitness of the population in order to breed.
Fitness takes into account both the chronic effects of starva-
tion and the instantaneous effects of predation. Also,
%Breed increases as the environment becomes more occu-
pied, reflecting the limited carrying capacity of the environ-
ment.

Agents which possess a fitness that exceeds the Breed
Threshold then choose other agents to mate with based on a
changeable parameter called Breed Type.  Potential values
are proximity (choose the nearest agent), random (choose
randomly), and fitness (choose the non-mated agent with the
highest fitness). To encourage cluster formation, proximity
mating was typically used in the simulations presented in
this paper.

Standard crossover operations, with multiple crossover
points, are then performed on the mating agents’ chromo-
somes.  Chromosomes consists of the means and variances
of the membership functions of the fuzzy inference system,
as well as the output rules

The resulting chromosomes are then mutated with a
decaying mutation rate.  The resulting new agent that pos-
sesses the new chromosome is given alliance values that are
an average to that of its parents.  The new agents initial
energy is likewise an average of that of its parents.  Place-
ment of the new agent takes place as close to one or more of
the parents as possible.

The simulation continues in this way for a preset number

of rounds or until the population becomes extinct or oversat-
urates the environment.  Typically, the modulation of the
Breed Percentage and other factors allows for an equilib-
rium occupancy of the environment.  Typical experiments
have resulted in equilibrium occupancy values of between
twenty and fifty percent.

Throughout the simulation run, results are ported to
appropriate plots and numerical displays for subsequent
analysis.

IV. SIMULATION RESULTS

Twenty-five simulations were run, with variations in
many setup parameters.  For example, the initial number of
agents was varied between an initial occupancy of 10% and
50%. Parameters were varied in order to demonstrate the
robustness of the linear relationship between group size and
communication activity.

Figure 5 shows the percent occupancy of the environment
by simulation agents over simulation time.  In most simula-
tions there is a dip in percent occupancy at the beginning as
non-fit agents created during the random initial setup are
culled primarily by predation forces.  Subsequently, the per-
cent occupancy rises to an equilibrium level around which it
oscillates.  In Figure 5, the equilibrium level was approxi-
mately 24%. Figure 6 demonstrates similar behavior in the
mean group size as a simulation proceeds.

As expected, the breed threshold is modulated according
to the percent occupancy of the environment.  Figure 7
shows this principle.  During the initial dip in percent occu-
pancy, the breed threshold decreases to allow more agents to
breed, thus preventing extinction, and allowing the agents to
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Fig. 5. Change in environment occupancy by agents

From round number zero to about 125, the population
decreases rapidly as unfit agents with randomly initialized
chromosomes are selected out.  From round number 125 to
300 the population rebounds, followed by a period of small
oscillations around an occupancy equilibrium.



recover to the carrying capacity of the environment.  Mini-
mum fitness is displayed to help track when starvations
occur.  Deaths due to starvation are in fact rare compared to
predation-related deaths in most of the simulations that have
been run.  Approximately, 30 times as many predation
deaths occur than starvation deaths.  One potential cause
would be a small distribution of fitness values across the
population.  In this case fitness is not able to decrease below
a fixed percentage of the population mean fitness because
most fitness values are crowded around the mean.

Behavior primitives were often observed to quickly reach
equilibrium values in the population. Figure 8 shows the fre-
quency of the four behavior primitives over the population
at the end of each round if one were to assume the environ-
ment would remain constant before each agent moved.  This
assumption is of course false, however, the concept is still
useful for judging the success of behaviors. The "Away"
behavior often was observed to die out quickly.  Predators
that often moved away from clusters would be at a greater
predation risk, which often outweighs the benefits of escap-
ing from potential starvation.  If the simulation were
changed to one in which agents were periodically removed
from their environment and placed into new ones, then it is
believed that the "Away" primitive would be of greater use.

We found a mean r2 value for a linear fit to the data of
0.87, with a standard deviation of 0.069.  Typical Results are
displayed in Figure 9. This result means of course that 87%
of the relationship between average group size and commu-
nication activity can be explained by the linear fit, while the

other 13% is potentially random noise.  The evolving nature
of the population clearly introduces a random element into
this simulation, thus 0.87 is sufficient to back our original
hypothesis, although further research would be desirable to
test fully what circumstances this result was valid under.
The mean slope of the best-fit line, normalized for the num-
ber of rounds, is 8.9, with a standard deviation of 2.53.

It is interesting to note that in earlier experiments, where
communication amplitude was not evolved, an even higher
linear fit was discovered.  The mean r2 value in this case
was found to be approximately 0.96.  However, in not
allowing communication amplitude to vary, the two vari-
ables are designed in such a way that correlation is inevita-
ble, therefore it is not surprising that we found a higher r2

value.
There are a number of reasons that may potentially

explain why mean group size was found to be highly corre-
lated with communication activity.  For example, communi-
cation activity may indicate to an agent how successful the
cluster it is in has been.  If the agent has high alliances with
nearby agents, then most likely the agents in this cluster
have been working together for a significant period of time.
Thus the evolved interactions of these agents may be suc-
cessfully countering the ever present starvation and preda-
tion forces. It would then be to the advantage of the agents
present in that cluster to stay within the successful cluster
rather than to leave it for an uncertain environment.

Fig. 6. Mean group size

Mean group size decreases rapidly as the initial population is
winnowed based on agent fitness. Mean group size starts to
increase at around round number 100.  However, the overall
occupancy remains fairly constant until round 150.  The
clustering of agents during the period between rounds 100 and
150 enables the subsequent rapid growth in percent
occupancy. The final equilibrium mean group size is
approximately 6 agents.
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Fig. 7. Relative population fitness values

Much of the high-frequency oscillations observed here are
caused by the frequency of breeding, which in this case is
every five rounds.  At round 75 an agent is removed due to
starvation, as the minimum fitness suddenly changes. At all
times except between rounds 22 and 28 the agent with the
maximum fitness in the population has a fitness that is above
the breeding threshold, thus at least one agent in the
population will breed.
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V. CONCLUSION AND FUTURE WORK

In this simulation we have demonstrated the goodness of a
linear fit to the relationship between mean group size and
communication activity.  An r2 value of 0.87 was found for
the correlation of these two variables over a number of
experiments with a variety of parameters adjusted, thus pro-
viding a certain robustness to the result.

In the future, we will adapt this simulation from a soft-
ware environment to a hardware environment.  A hardware
implementation will more easily allow the agents to free
themselves from a discrete grid system.  Using multiple
Khepera robots, agents will communicate with one another
with Infra-Red transmitters and receivers.  Cluster informa-
tion will be extracted from observations of the robots’
immediate environment.  We hope to reproduce the results
generated here in the software simulation and remark on any
differences that may arise due to issues related to the physi-
cal implementation of this simulation. In addition, more in
depth mathematical modelling, as in [4], with be performed
in order to improve the closeness to reality of the simulation
model.
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Fig. 8. Frequency of behavior primitives

The behavior primitives are outputted from each agent’s fuzzy
inference system and accumulated in this plot for each round.
In this simulation agents adapted a strategy of mostly trying to
move toward their cluster center, while also occasionally
moving away from the cluster or doing nothing. Agents that
moved toward their cluster edge appear to be at a disadvantage
to other agents, due in part to increased predation forces at the
cluster edge compared to the interior.
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Fig. 9. Typical linear fit between mean group size and 
communication activity

In this simulation, cluster sizes ranged from a single agent up
to a maximum of 28 agents.  Data points are taken after each
round.  However, only rounds after which the population had
reached a percent occupancy equilibrium were used in the plot
above so as to discount the transient effects caused by the high
genetic variance in the initial non-culled population.
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