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The Theta Neuron Network Trainer (ThNNT) is a Matlab-based GUI (graphical user interface) for 
training and running multi-layer network of theta neurons. It includes a gradient tester tool for 
gradient calculation verification under different simulation conditions. To run the ThNNT GUI, 
within Matlab, navigate to the directory where the current version of ThNNT is unzipped to 
(TNNT_1_07 for example). Next type “start_ThNN” from the Matlab command line.  The GUI 
should start automatically. A screen capture of the main ThNNT screen follows:

To Generate a Data Set:

Create an m-file in the Regression, Classification or SpikeTimes folders within the DataSets folder. 
The information in the m-file will depend on the type of input data. Regression refers generally to a 
continuous function that the ThNN should attempt to approximate. Classification refers to real-
valued input data that is assigned into membership classes. The ThNN is trained to learn and 
generalize the classes. SpikeTimes refers to giving the network spike time values directly. 
Generally, the first two types are SISO, and the last can handle single or multiple input and output 
spikes per synapse. The examples below will clarify what the data generation file should contain. 
After the the data generation is run, a binary mat file will be created that ThNNT can use directly 
and which should appear automatically in the Training Data window when ThNNT is next started.

Regression Example:

%Cosine Data Generation
clear all;
 
%To make sure input are different each time this is run



rand('state',sum(100*clock)); 
 
EncodeMethod='Linear';
DecodeMethod='Linear';
InputSpikeRange=[2 8];
OutputSpikeRange=[16 28];
InputRange=[0 2*pi];
OutputRange=[-1 1];
Inputs=2*pi*rand(60,1);
Outputs=cos(Inputs);
TestFlag=1;
TestingInputs=2*pi*rand(10,1);
TestingOutputs=cos(TestingInputs);
FH=@cos;
 
save('Cosine');

Classification Example:

%Fisher Iris Data Generation
% Fisher, R. A. (1936). "The Use of Multiple Measurements in 
Axonomic Problems." Annals of Eugenics 7, 179-188. 
clear all;

  
%PW PL  SW  SL  Type
IrisData = [
     2    14    33    50     0
 ...
    24    51    28    58     1
     2    15    37    53     0];
 
EncodeMethod='Linear';
DecodeMethod='Linear';
InputSpikeRange=[2 8];
OutputSpikeRange=[20 30];
InputRange=[min(min(IrisData(:,1:4)))... 
max(max(IrisData(:,1:4)))];
OutputRange=[min(IrisData(:,5)) max(IrisData(:,5))];
Inputs=IrisData(1:100,1:4);
Outputs=IrisData(1:100,5);
TestFlag=1;
TestingInputs=IrisData(101:end,1:4);
TestingOutputs=IrisData(101:end,5);
 
clear IrisData;
save('Fisher_Iris');

SpikeTimes Example:

%Basic MIMO Data
 clear all;

 
EncodeMethod='Spikes';
DecodeMethod='Spikes';
InputSpikeTimes={[1 2; 1 4] [1 1.5]}
DesiredSpikeTimes={[1 28] [1 25; 1 27]}
TestFlag=0;



 
save('BasicMIMO');

How to Run a Training Simulation:

Network Parameters
These parameters determine the type of ThNN to be used in a simulation. They cannot be changed 
mid-simulation. Generally with MIMO (more than one spike per input and output synapse) data 
sets, we are using a positive Inot value in the output layer and a negative Inot value in the hidden 
layer. The randomize Inot checkbox currently indicates that the sign (but not the magnitude) of the 
hidden layer Inot values will be randomized (i.e. about half the hidden neurons will have a positive 
Inot and half the hidden neurons will have a negative Inot). This randomization may be helpful in 
breaking symmetry in the dynamics that slows or prevents training in certain cases. All the default 
values here should be fine, except perhaps increasing the number of hidden neurons may increase 
the training precision (and decrease the training speed as a tradeoff).

Training Parameters
These parameters may be changed during a simulation. Online training will proceed quicker than 
batch in general, but may also be less stable. The learning rate is the most important parameter. 
Some data sets prefer a higher or lower value. If the initial learning rate is too high, it may cause all 
the hidden neurons to not fire, which in effect means the network has gone unstable. The training 
should be restarted with a lower value of the learning rate.

Training Status Panel and Axes
These axes and the panel display current results at an interval determined by Display and Testing 
frequency. The zoom window sliding bar may be used to change to the zoom scale on the bottom 
mse plot. Likewise, the Smooth Data checkbox and the Averaging Window edit box allow for the 
user to smooth the local data to flush out undesirable high frequency oscillations.

Training Controls
Display and Testing frequency determine how often testing data is generated, how often results are 
displayed on the panels and axes, and how often data is saved to an output file. Parameters may be 
saved and loaded using the training controls. Load simulation allows the results (or partial results) 
from a previous simulation to be loaded, including the parameters with which the simulation was 
conducted. Training can then be Continued. The Train button starts a simulation from scratch. The 
Stop button stops a simulation. The Continue button continues the simulation from where it was last 
stopped.

Gradient Tester

Gradient Tester is a separate GUI that can be accessed through the tools menu of ThNNT. The 
Gradient Tester GUI lists five simple steps that allow the user to choose previously generated 
simulation results and generate calculated and numerical gradients for comparison. Gradient Tester 
has been designed to work with SISO (single spike per input and output synapse) and MIMO data 
sets. A screen capture of the Gradient Tester Window follows:



TBD in Future Releases
● Improve this help file to include in part the equations from upcoming publications once they 

are submitted
● Add ability to load a network and run sample data through it to see if after the fact, the 

network has generalized in a particular way
● Likewise, add an animation for displaying network running for complex recursive networks
● Add more menu bar functionality
● Add interactive graphical method for adding datasets
● Reintroduce two-input regression functions
● Add the ability to compare to SpikeProp
● Generate more plots similar to QwikNet ©
● There is possibly a small gradient calculation error when all the weights are the same (I 

assume that some spike time sorting somewhere has inconsistent behavior)

Known Bugs
Please let me know when you find them (email to: Samuel.McKennoch@loria.fr)


