
 A Biologically-Inspired Platform for the Evolution 
of Communication in Multi-Agent Systems

Sam McKennoch*, John-Michael McNew, and Linda G. Bushnell
Department of Electrical Engineering

University of Washington
Seattle, Washington 98195-2500 USA
E-Mail: skennoch@u.washington.edu
Abstract - This research effort seeks to address the problem of
limited communication in multi-agent systems by the use biologi-
cally-inspired implementations of intelligent control systems. A
detailed simulation platform is built and tested. The platform con-
tains many user-configurable parameters and is intended to be
used as a general purpose research tool for the study of the evolu-
tion of communication in multi-agent systems. The user-config-
urable parameters include those that modify the agent
environment, the structure of agent communication abilities, and
various simulated biological selection forces and influences
including natural selection, cultural transmission, and sexual
selection. The simulation involves a predator-prey (pursuer-
evader) environment in which evolving predators seek to capture
prey and thus increase their fitness. Agents are given the ability to
communicate, but are not forced to do so. Simulation results are
presented to demonstrate the usefulness and abilities of this tool.

1. Introduction

In recent years, attention has been growing in the area of
distributed robotics. Under this paradigm, multiple robots
or agents solve a task in parallel either through explicit
cooperation, competition or some combination thereof [28].
One of the primary factors limiting the application of such
systems is the scalability of communications needed for
group action. For an individual robot, communications can
represent a significant drain on power and computing.
Obviously, as scalability explodes, time, space and power
usage will quickly swamp the available resources. Thus
efficient communication is an important current topic of
research in the application of multi-agent systems to a vari-
ety of engineering tasks including distributed space explo-
ration and search and rescue tasks. Another recent research
effort from the fields of computer science, and linguistics is
the evolution of language [9], [17]. This paper combines
ideas from these two areas and describes new research
exploring the way that communication and cooperative
action among autonomous agents interact. The goal is to
evolve task environment specific language whose commu-
nications overhead is minimized for a maximized perfor-
mance measure. The overall objective of this research effort
is to demonstrate that in task environments whose con-

straints can be modeled as evolutionary pressures, a group
of autonomous agents may evolve a task-specific communi-
cation system and simple language that will increase their
overall effectiveness. Moreover in environments that penal-
ize communication efforts such as surveillance tasks or
noisy communication networks, a task-specific communi-
cation system including only those speech acts found neces-
sary to complete the task will minimize inter-agent
communications, yielding significant group problem solv-
ing improvement. As a step towards this overall research
goal this paper focuses on the development of a software
simulation tool, called CommEvolve, for investigating these
issues using evolutionary algorithms and artificial neural
networks.

The authors take the view that all communication takes
place within the context of language. Language has two
components, structure (or syntax) and vocabulary. The
combination of vocabulary and syntax define the expres-
siveness of a language or the size of the ideas which can be
expressed. The authors propose that for a given task envi-
ronment consisting of a performance measure, environ-
ment, and a number of agents, and methods to act upon that
environment, there exists a supremum of that performance
measure. Given the resource usage of communications, it
makes sense to include the expressivity of the communica-
tions into the performance measure, since a more expres-
sive communications structure requires more resources
which will impinge on other control and decision making
methods. Intuitively, once communication overhead is
included in the performance measure, there is a trade-off
between expressivity and performance. Initially as the
expressivity of the language is reduced, the performance
measure increases since less communication overhead is
required. However, as the size of the language is reduced,
the ability of agents to communicate and hence to coordi-
nate is reduced. At some point the trade-off balances. Thus
at the maximal performance, there exists a minimized lan-
guage size. The size and structure of such a language
should be such that the required resources generate as little
unneeded expressivity as possible. Thus language size



becomes another aspect of group control to be optimized.
This paper discusses new research in this area. Specifically,
this paper presents a simulation tool that utilizes genetic
algorithms and neural networks to combine the decision
making and language structure problems into a common
framework, where language structure can be developed that
is specific to the task environment. 

More formally, let Pu be the set of pursuers in the
unknown environment, Env, and Ev be the set of evaders. L
is the set of all possible speech acts contained within a
given syntax and vocabulary size. Let S(Pu, Ev, Env) be the
set of all possible sensor states for each robot, where S is a
function of the pursers and evaders, and environment. Let
Mp be the set of all predetermined methods available to the
pursuer robot to operate on the environment. The evader
methods, Me are initially unknown and predetermined.
Finally let P(Mp, L, Me, Env) be the performance metric.
The metric is a function of the methods used by the pursu-
ers, the methods used by the evaders, the speech acts used
by the robots, and the environment.

The current research can then be stated as follows: given
a language structure L, an initially unknown environment,
Env, and a set of pursuers and evaders with unknown meth-
ods, find a mapping F: (S,L) � L and a mapping G: (S,L) �
M such that P(Mp, L, Me, Env) is maximized. Future
research will take this one step further by also optimizing L
in order to maximize P(Mp, L, Me, Env). Thus the problem
requires a mechanism for these mappings and a learning
mechanism to improve the mappings as the environment
and methods of the other agent are sensed.

This paper is organized as follows. Section 2 presents the
basics of the CommEvolve tool and the predator-prey envi-
ronment. Section 3 and Section 4 present various aspects of
the tool, namely the communication system and the learn-
ing methods (cultural transmission and agent evolution).
Section 5 presents results from representative simulations.
Section 6 contains conclusions and future research direc-
tions. References to the state of the art in the literature are
given throughout the paper.

2. Simulation Environment

CommEvolve is a simulation tool designed in Matlab
(Copyright 1984-2002, The MathWorks, Inc., Version 6.5,
Release 13). The tool includes a graphic user interface for
ease in use. Given the modularity of the tool, and the com-
munity’s familiarity with Matlab, the intent is that the tool
will be used not only to explore the theoretical aspects of
evolved communication, but also to model real world
multi-agent systems

The task environment, Env, chosen is a simulated preda-
tor- prey domain. This domain is chosen because it is well
documented. Also because the complexity of decisions
increases exponentially with the number of given choices,
in the absence of a good model of the prey, predators are
forced to “learn” their likely moves. The prey do not neces-

sarily obey game-theoretic concepts such as a rational com-
putation of rewards. In the face of such illogic, the pursuers
must adapt specifically to the methods of the evaders.
Another reason this domain is chosen, is that the simulation
can also be used to explore ideas of evolved search meth-
ods, since search simply requires stationary prey.

The tool is developed modularly with predators, prey, and
world as structures that can be modified to represent differ-
ent engineering problems. What follows is a description of
current default parameters. The world structure is a toroidal
manhattan grid of variable dimension in which each space
can be occupied by a predator agent, a prey agent, or obsta-
cle object. Each agent has a sensor suit, S that yields infor-
mation about the environment. Current defaults include
directional sight, hearing, and contact sensors. Each agent
also has methods, M, corresponding to actuators that effect
the environment. Thus, for real engineering problems, the
methods involved in different problems can be included to
reflect the specifics of the problem. For instance, agents can
be given mass parameters that simulate actual robot dynam-
ics. Heterogeneity can also be added in order to give differ-
ent predators different sensing or actuation abilities. Thus
heterogeneous agents may be more likely to have to cooper-
ate and communicate in order increase their collective fit-
ness. 

Obstacles are objects that interfere either with the agents
sensing, actuation, or communication. They can be used to
simulate real environmental effects such as signal scatter-
ing, etc. The current default obstacle is a tree which blocks
sight sensors and motion methods, but does not affect com-
munication. As discussed by MacLennan, although a task
can require cooperation, it only requires communication
when agents possess private knowledge of the environment
necessary for successful cooperation [17]. The sensor
blockage created by the trees creates this private domain
knowledge in our simulation and increases the need for
agent communication. Figure 1 shows a sample screen shot
of a two-dimensional world and resulting statistics from a
sample simulation using this world.

The strategy by which prey move can be chosen from a
stationary one, to moving away from closest predator, to a
number of standard pre-formulated strategies based on
predator capture strategies [14]. In order for successful
predator evolution to take place it is best that the predator
agents neither dominate nor be too weak (otherwise prey
extinction or overpopulation will take place). Also, allow-
ing the prey to be stationary at times allows this tool to per-
form simulations similar to that in [7] for comparison in
which agents seek to find mushrooms to eat, but must also
chose between mushrooms of different nutritional levels.

Providing a rich environment in which agents may act
helps to solve the problem of grounding in a communica-
tion system. This problem occurs when agents exchange
symbols back and forth in an evolved language. However,
in the absence of environment, although agents may under-



stand each other, the symbols refer only to other symbols
and therefore there is no starting point in language through
which to establish meaning [16]. Grounding language in the
environment also encourages the development of unex-
pected and original semantics [7].

Simulation time is divided into “hours” and larger units
of “days”. Every hour a random number of predators and
prey are chosen to move simultaneously. This asynchro-
nous method of updating agents eliminates many of the
problems associated with synchronous updating [3]. It is
therefore possible that an agent may respond in two consec-
utive hours, or that it may not be activated at all. Conflicts
in movement are settled probabilistically via agent fitness
level. Fitness for all agents is updated at the end of each
hour, and followed by the removal of any agents that may
have died. Every day agents are removed from the current
environment and exposed to a new one in order to ensure
that the agents are not merely training on the initial environ-
mental set-up [14]. Upon the completion of a day, agents
with a fitness level over the user-defined breeding threshold
are able to be bred if this option is enabled. A mate is cho-
sen based on a user-defined parameter relative to the breed-
ing agent (female choice). New agents are added to the
environment without the removal of the parent agents. Each
agent’s genotype undergoes crossover and mutation to pro-
duce a new agent. The parents remain in the environment
with the new agent placed spatially near to the mother
agent. This arrangement is meant primarily to simulate sex-
ual selection. Sexual selection provides another force of
evolution which can work with or against natural selection
within limits [12]. Any agent is able to mate when their fit-
ness exceeds a certain level, and likewise any agent can be
mated with, thus the population is on some level hermaph-
roditic. Breeding levies a fitness penalty on the mother.

Subsequently, agent’s neural networks are trained, as dis-

cussed in Section 4.1, if this option is enabled. Prey also
multiply in this environment at a fixed user-defined rate
(which can be negative or positive) and without any intelli-
gence. Possible termination criteria for this simulation
occur when the prey go extinct or overrun the predators.

The current effort tackles the objective of finding a map-
ping which combines both decision, sensing, and speech
acts for a language of a given structure and expressivity
through the development of the CommEvolve tool.

The performance metric P(Mp, L, Me, Env) is referred to
as “fitness” in genetic applications and is the measure by
which an agent’s ability to mate and survive is determined.
In terms of engineering applications, the exact form of the
fitness function is crucial to the success or failure of the
intelligent controls approach to finding a solution. For
example, in [25], the author’s perform path planning.  The
fitness is defined as a function of the time it takes an agent
to reach its goal and the weight of the cargo it carries with it
to the goal.

The exact form of the fitness formula in this effort is
user-defined, but in general fitness is a function of agent
age, movement, amount of communication performed,
feeding success, and mating. The amount of fitness sub-
tracted per hour may be set to be uniform or to increase
exponentially to simulate the compounding effects of age.
In the pursuer-evader domain conflict ensues when a pur-
suer agent and either another pursuer agent or an evader
agent come in contact. In both cases the losing agent in a
conflict loses an amount of fitness related to the partici-
pant’s fitness levels. As determined in [20] the penalty in
the case of pursuer-evader contact should be an order of
magnitude greater than other costs per the effects of serious
injury tend to have a much greater impact on fitness than
other energy expenditures. In order to come in contact, a
pursuer need only be next to an evader, while for the case of

Fig. 1. Sample Screen Shots of CommEvolve in Display (a) and Statistics (b) Modes.

(a) Demonstrates the ability to observe the simulation in real-time as agents interact with the environment. (b) Demonstrates the
modularity of the tool in allowing for observation of different simulation statistics.
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two pursuers, conflicts occurs when they both attempt to
occupy the same space. Also, there is a penalty for acts of
communication committed (Section 3).

The mechanism for an increase in agent fitness is feed-
ing. When an agent feeds on trees, fitness increases but at a
much slower rate compared to when they feed on moving
prey. The predator agents are thus omnivores. When an
agent mates, the parent agents incurs a fitness penalty in
order to provide the new agent with an initial fitness and
still conserve the fitness of the entire environment. In sum
then the fitness function may be described as:

(1)

where Pa is the fitness of agent a; α is a uniform or expo-
nential function of time to account for aging; β is the proba-
bility of performing a communication act as determined by
the agent’s neural network; γ is the communication penalty;
δ is probability of being next to a tree; ε is the energy gain
for feeding on a tree; ζ is probability of being next to a
prey; η is the payoff for a prey-predator conflict and is a
function of Np, the number of predators surrounding the
prey; θ is a function to determine the change in fitness
when two predators come in conflict by trying to move to
same location and is a function of , the vector of fitnesses
for the entire predator population; κ is a function describing
the probability of mating and is a function of the population
fitnesses and locations of the current agent and of agents in
proximity to the current agent.

Rather than guessing other agent’s goals, interactions are
based on external, observable, time-varying behavior [19].
A time filter is used as a behavior-based method of measur-
ing survival success which is inclusive of the use of com-
munication. Currently, such a measure that can characterize
and judge agent behavior and therefore communication suc-
cess in a way that is not completely subjective or qualitative
does not exist in the literature [13] [26]. Other methods of
measuring communication success do not in general apply
to this simulation. For example, the denotation matrix used
in [8], [11], [17], and [18] is not applicable since it assumes
that the communication system is externally known a priori.

3. Communication System

Successful communication results in conferred individual
or group advantage via the transfer of information. In
purely biologically inspired systems, the actual cost of sig-
nalling is negligible [20]. However, in the realm of engi-
neering if the signalling cost was negligible there would be
no reason to optimize such a system, which is clearly not
the case. This section discusses some background theory in
inter-agent communication, and explains how CommEvolve
relates language, L, and environment, Env.

Many research efforts to date have attempted to develop
communication from the perspective of meaning to signal

mappings, largely because many of these efforts were non-
grounded thus eliminating the environment as a consider-
ation. The signal mapping for CommEvolve is shown in
Figure 2. The meaning to signal mapping exists only inter-
nally within the neural network. An explicit mapping
between meanings and signals is not necessary because fit-
ness is based on behavior not on a forced pre-defined map-
ping metric. At least three output communication channels
are available as representative of a frequency decomposi-
tion of the output communication signal. The actual number
of communication channels available will be modulated in
different experiments to help determine the number of
channels needed to maximize agent fitness. Indeed the
number of channels available may be incrementally
increased as a simulation proceeds to enable the incremen-
tal learning of more complex syntaxes as done in [1]. Com-
munication channel outputs are real-valued as opposed to
other efforts that use only binary values [8], [17]. Real-val-
ued communication systems have been shown to make
communication systems less sensitive to noise, allow more
variability, and produce a closer model to nature [24].

As defined in [27], a conversation is a particular language
game, in this case the communication of information from
an agent to other agents. A possible series of steps for a lan-
guage game is as follows [6]. 

• Establish contact with the another agent
• Identify the communication topic
• Categorize the surrounding world
• Speaker’s encoding of the communicative signal
• Listener’s decoding of the signal
• Feedback from the listener to the speaker

Feedback in this simulation is allowed but not necessary
because learning training sets are developed based on agent
observed agent behavior. The arbitrary choice then of
choosing to award the emitter or receiver for successful
communication alone as in [17], and thus guide communi-
cation into developing as a purely cooperative mechanism
is not necessary. A series of conversations is called a dialog.
Iterated dialogs between agents may help in narrowing
down the intended meaning to be transferred.

Agents receive a communicated signal according to their
spatial distance to the communicating agent. As this dis-
tance increases the strength of the communicated signal is

Pa Pa α t( )– β γ δ ε ζ η Np( ) θ P( )– κ P L,( )–⋅+⋅+⋅–=
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Fig. 2. Environment, Meaning, and Signal Mapping.

Meanings (M) consist of the current, (E), and past (E-1)
environment states in addition to current (S) and past (S-1)
signals from other agents. Meanings are then communicated
and/or acted upon.



scaled downward according as [24]:

 (2)

SIN is the signal that agent a receives; SOUT is the signal
that agent b sends; σ is a bounding function to maintain a
useful numerical range, d is the euclidean distance between
agents a and b; U is a noise generating function that gener-
ates a random number between -ui and ui. An important test
of the communication system once established is to add
noise to the environment as represented by U in equation
(2) and see if the communication system can be maintained,
i.e., how robust the communication system is to external
interference. σ is a bounding function used to ensure that
communicated signals remain within a reasonable range.
Signals communicated simultaneously from multiple agents
are summed together and last for a single agent activation
cycle. CommEvolve allows this equation to be modulated in
order to test out various communication neighborhood
sizes. Communication allows for the transfer of signals to
agents other than the nearest neighbors as would be the case
in a purely cooperative system, however there is an optimal
neighborhood size beyond which sending information to
more distance agents adds unneeded complexity.

Communication’s effect on a population’s fitness can be
measured by removing communication abilities and observ-
ing the relative metrics compared to when communication
is permitted as in [18]. The evolved communication system
can also be assessed by providing an externally chosen non-
evolving communication language for comparison [6].

Over time it is expected that CommEvolve will enable the
agent communication language to evolve by memorization,
generalization, and invention [4]. An optional feature in
CommEvolve is to enable a “follow communication gradi-
ent” primitive for each communication channel. This primi-
tive has been shown to aid in communication development
[24]. In [26], communication systems are defined as unam-
biguous, partially ambiguous, and fully ambiguous depend-
ing the uniqueness of the signal mappings. Unambiguous
systems are seen as most efficient as they are the least
redundant. CommEvolve allows users to examine typical
environmental and signal inputs in respect to their outputs
in order to determine the nature of the communication sys-
tem that might develop using different parameters. In [26]
an obverter (basically a neural network run backwards) is
used to encourage the development of an unambiguous
communication systems. However it is the authors’ view
that a degree of ambiguity may add to the robustness of the
system and so should be explored rather than shunted.

4. Learning Methods

CommEvolve’s mapping of sensed environment and com-
munication to outputted communication, F: {S, L} � L, and
its mapping to actuation methods, G: {S,L} � M is
achieved via neural networks. Thus all learning methods

which improve the performance metric are methods which
alter the structure of the neural networks. The two methods
used for learning are cultural transmission and genetic evo-
lution. Both are described in this section.

4.1  Cultural Transmission

Cultural transmission models the learning ability of
humans to acquire language information that is not innate.
Agent aging helps to modulate the amount of cultural trans-
mission. More specifically, agents all have a genotype that
is composed of the weights and biases in the neural network
that they are born with. Upon birth, an agent’s phenotype is
identical to its genotype, but soon begins to diverge as the
agent learns from its surroundings as in [18]. Because new
agents are placed spatially near their mothers, it is expected
that a large amount of the initial cultural development will
take place as a result of observing the mother agent. Based
on the agent’s observations of its environment and of adults
communicating, a training set is produced that is represen-
tative of the observations that resulted in maximum fitness
payoff over time to the participants. At the end of every day
this training set is used to train the agent’s neural network
via back-propagation. By generating a training set based on
observation rather than participation, the simulation more
closely follows the method by which children learn lan-
guage [16] and which has previously been successfully
demonstrated in simulation [7]. When the agent matures
and becomes ready to breed, the agent’s genotype and not
phenotype are used, thus maintaining Darwinian over
LaMarkian evolution. As with the other selection forces,
culture may be permitted or suppressed. When culture is
suppressed, no training of the neural network is allowed.

Regarding how the training set is developed more specif-
ically, a time filter is applied over a number of hours to
determine what inputs and outputs are to be put in its train-
ing set. The time filter helps to determine the longer-term
effects of a move as it may initially cause a decrease in fit-
ness, only to later on cause an overall increase in fitness.
The exact nature of this filter is user-defined. Typically, sig-
nal processing windows such as modified Hamming win-
dows are used in CommEvolve because they provide a good
balance of long-term and short-term effects.

Predator neural networks have a user-defined number of
layers and nodes per layer. Input and hidden layers use sig-
moid squashing functions, while output nodes are also user-
defined. Neural networks are a good choice for agent struc-
ture because they are not domain dependant and therefore
do not constrain or direct in a biased way the direction of
the simulation [13]. A number of other efforts have used
neural networks to successfully evolve levels of communi-
cation as listed in [17], [24], [26]. Other structures such as
finite state machines are unable to generalize in the way
that neural networks can [17]. The CommEvolve tool allows
the user to choose between a feed-forward neural network
and an Elman neural network. The Elman neural network

SIN a i,( )
σ SOUT b i,( ) U ui ui,–[ ]+( )
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contains recurrent weights that allow the network to learn
behaviors based on a sequence of past and present environ-
ment and communication inputs.

Each agent’s genotype is made up of an encoding of the
weights in this network. The inputs to the neural network
include a representation of the agent’s sensible environment
including communication inputs. Spatial relationships such
as front, side, behind, left, straight, and right (in the case of
two dimensions) help to define the inputs as was success-
fully demonstrated in [27]. The outputs of the network
include a behavior output as well communication outputs.
Also kept track of within each agent are its position, orien-
tation, a record of previous environments and moves.

Following from [3], agents have three primary senses at
their disposal: vision, hearing, and touch. Vision is limited
to the direction in which the agent is oriented out to some
maximum distance. Agents are able to hear other agents in
all directions, although the strength of communicated signal
drops off with distance. Tactile sensation allows agents to
know precisely what occupies the grid spaces immediately
adjacent. Unlike homogenous agents, heterogenous agents
may have varying sensing and actuation abilities. Thus
communication could provide full sensory information and
a subsequent sensible movement response.

There is a balance to be had in developing the level of
complexity of behavior primitives. Extremely high-level
behavior primitives restrict the freedom of the evolutionary
process, but provide a set of behaviors that can be used as a
building blocks to the overall behavior required. The prob-
lem is the overall required behavior is not known a priori in
this case, and so care must be taken in designing appropri-
ately sized building blocks. Likewise, low-level behavioral
primitives offer the maximum scope for ingenuity, but can
result in prohibitively large evolutionary times prior to the
emergence of meaningful high-level behavior [2]. This plat-
form includes by default primitives such as orient toward
nearest predator, move forward, random move, do nothing.
From these behaviors, higher-level behaviors are able to
emerge, such as in the case of conflicts retreat, hold-ground,
or attack [20]. With minimal knowledge of the underlying
code, users may add or delete primitives in order to test var-
ious hypotheses. 

4.2  Agent Genetic Evolution

CommEvolve uses a genetic algorithm (GA) to simulate
biological evolution on agent’s neural network weights and
biases. GAs have been shown to provide an optimal alloca-
tion of trials to substrings, as well as the ability to evaluate
an exponential number of string patterns (schemas) with
only a linear number of string evaluations [14]. Agent
information is encoded into chromosomes. GAs do not
scale well to the use of long chromosomes since the search
space increases exponentially and so the size of the neural
network that the GA acts upon is kept to a minimum [5].

In order to increase the speed of the simulation, the GA

chromosomes are not converted to binary. Conversion to
binary would be optimal to ensure maximum schema mix-
ing, however this conversion process has been found to
reduce the computation speed and algorithm convergence
rates in preliminary simulation runs, and so real-values are
used in the GA. The primary crossover mechanism acts by
swapping the weights between chromosomes according to a
user defined crossover rate. Additional methods for cross-
over include a linear combination of weights from the chro-
mosomes. This crossover strategy works best for genes that
can relate input and desired output as a linear combination,
and may converge more quickly in task environments with
these characteristics. The uniform mutation operator alters
weights by adding a uniformly distributed noise parameter
90% of the time, and by replacing the weight altogether the
other 10% of the time. Another type of mutation, boundary
mutation is generally set to occur less often. Boundary
mutation sets the parameter to be mutated to either the max-
imum or minimum weight or bias of the agents thus explor-
ing the boundaries of the weight and bias range [29].

In line with MacLennan’s original denotation of the pas-
sage of time [18], the environment of the agents is changed
at cycles called days. The periodic resetting of the environ-
ment encourages the networks to generalize their response
rather than training to a specific environmental layout.

Part of the generality of the tool lies in the fact any selec-
tion mechanism such as sexual selection, cultural transmis-
sion or natural selection can be disabled to examine the
effects of isolated methods on solution convergence. Due to
the model complexity it is not expected that an analytical
model of the solution mapping can be predicted a priori.

In default, death occurs when an agent’s fitness drops
below a pre-defined threshold. Thus the population size is
not fixed and can adjust itself to the needs of its environ-
ment during periods of feast and famine. However, an alter-
native method of mating and death is included so that the
population size remains constant and embodied agents such
as teams of mobile robots can be more easily simulated.

5. Simulation Results

Perhaps the most important part of this research is the
ability to effectively measure the results in order to make
changes to the simulation or to develop engineering princi-
ples. For very limited cases equations can de derived, for
example the rate of energy loss and rate of change in popu-
lation size as in [9]. However, in many cases the environ-
ment complexity requires analysis of empirical results.

CommEvolve contains metrics that are capable of track-
ing specific agents over time by tracking training sets, the
fitness of their training sets, and the number of offspring
among other parameters. As a group, average and best fit-
ness as well as average and best rate of fitness change are
tracked [18]. Average training set fitness is also tracked and
observed as it changes over time. To provide further robust-
ness, it is possible to periodically test the best individual.



There are a number of forces at operation in the
CommEvolve simulation tool, each of which can be individ-
ually activated to gain a sense of its contribution to the
complex web of interactions the various selection forces.
These forces include communication, natural selection, sex-
ual selection, and cultural transmission.

A small sample of the initial results of CommEvolve fol-
low. These results demonstrate the ease with which various
parameters can be changed in order to observe the effects
they have on the population over time. The simulations
have been conducted over a period of 20 simulation days
with 10 hours per day. The number of trees, predators and
prey is set such the world space is initially half occupied.

In Figure 3a, the initial energy of the prey has been varied
from an amount equal to the predator’s energy to an amount
50% greater. When predators defeat prey, they acquire a
proportion of the prey’s energy. This change in initial prey
energy therefore should allow predator energy to rise more
quickly than without the change. The population metric
reflects a negative or positive growth in population size
from day to day. It is calculated according to:

(3)

where λ is the population metric; N is the current predator
population on a specific day; and N-1 is the predator popula-
tion size of the previous day.

By the end of this sample simulation, the population with
greater initial prey energy is in a state of expansion as dem-
onstrated by the positive λ value while the other population
is contracting, possibly heading toward extinction. A grow-
ing population should be limited by the carrying capacity of
the environment, i.e., the resources in a fixed environment
that will be able to support a relatively constant number of
predators. However, it is very easy to indirectly set the car-
rying capacity to be larger than the number of available grid

spaces, thus causing the simulation to prematurely end due
to overpopulation. In this simulation the energy at which
predators are able to breed is set at the initial predator
energy. Breeding, although it increases the population size,
incurs a penalty on average fitness because energy for the
new predators is derived from the parent predators. There-
fore in a growing population, a day of population growth
often correlates with lower average predator fitness (not
necessarily lower best predator fitness) followed by recov-
ery as the new predator and its parent’s energy increases
back toward the population average. In general, this simula-
tion demonstrates the ability to quickly produce representa-
tive results and test hypotheses through altering
environmental parameters.

In Figure 3b, one population is simulated with parameters
identical to that in Figure 3a, while the other population has
identical environmental parameters, but has genetic and
cultural selection disabled. Because breeding is interpreted
as part of genetic selection and is therefore disabled, there
is no mechanism for the population to increase in size, how-
ever, there is also no breeding penalty as happens when a
new predator agent takes its initial energy from its parents.
The population without selection enabled shows a much
greater amount of stability as expected. It appears then that
this population has an environment sufficiently rich enough
in energy that it can survive, but not sufficient enough to
allow reproduction. In a rich enough environment, it would
be expected that a longer simulation would show the popu-
lation with selection enabled eventually exceeding the pop-
ulation without selection as it becomes better adapted to its
environment. Longer simulations are also necessary to
demonstrate the advantage of communication.

6. Conclusion

This paper has presented a tool for studying the evolution
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Fig. 3. Simulation Results Demonstrating the Effects of Changing the Initial Prey Energy (a) and Disabling the Selection Forces (b).

In (a) Trial 2 has 50% greater initial prey energy than Trial 1. After 20 days the Trial 2 population exhibits a 45% greater average
predator energy and a 59% greater best predator energy. In (b) after 20 days the population with selection disabled has a 50% greater
initial energy, exhibits a 33% greater average predator energy and a 91% greater best predator energy.
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of communication in populations of competing agents. The
tool includes a large number of user-defined parameters in
order to allow a broad amount of research to be performed.
Initial results successfully demonstrate the effects of chang-
ing environmental and selection parameters.

Future work includes porting CommEvolve to C++ in
order to increase simulation speed. Also now that the tool
has been developed it will be used to study how a network
of agents best communicates in more detail. Other selection
mechanisms such as dominance and kin selection will also
be added. A dominance hierarchy would help in coordinat-
ing behavior and in resolving conflict between agents.
Leaders may emerge. A dominance hierarchy also helps to
provide the structure through which a new leader may
emerge if the current leader is eliminated. A kin-selection
system that creates a system of alliances based on the
degree of relatedness of agents helps in the evolution of
communication and behavior that is more altruistic than
would be expected if every agent acted in a way that
increased only its chance of survival.
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