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Abstract – This work seeks to present the initial steps 
towards developing an autonomously learned communication 
language among distributed agents. Symbols are anchored 
directly in the environment by having agents assign symbols to 
any distinct specimen in the environment that they are able to 
sense. Agents start with no previous knowledge of the 
environment. Agents then perform a classification and 
consensus routine in order to come to approximate agreement 
on specimen-symbol relationships. Convergence of the 
population to the same lexicon is examined and compared to a 
traditional control system where the consensus method used is 
analogous to a feedback controller.  

I. INTRODUCTION 

ULTI-ROBOT systems, although complex in terms of 
coordination and communication, are extremely 

powerful in terms of tasks that they can perform. For 
example, having a multi-robot system allows for increased 
robustness over single robot systems, as the loss of a single 
robot is not necessarily catastrophic. However, in order for 
robots to successfully reason about and interact with their 
environment, they must possess accurate internal 
representations, typically symbolic, of objects in their 
environment. Furthermore, in order for robots to interact 
with each other there must a method by which their 
individual internal representations are brought into 
sufficient agreement to enable the robots to perform 
cooperative tasks.  This problem, as depicted in Fig. 1, is 
that of symbol anchoring in a multi-robot system.1 
 

Symbol grounding, one important component of symbol 
anchoring, involves levels of representation known as 
iconic, indexical, and symbolic.  Icons are direct 
representations of objects, such as sensor observations, 
indices associate icons together, and symbols group together 
other symbols as well as indices.  If there exists a path from 
all symbols to icons then the system is grounded.  Thus there 
is a relationship between agents’ internal representations of 
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objects and the environment.  Without grounding, symbolic 
reasoning between agents can suffer for many reasons, 
including the “frame problem” [4].  The environment gives 
multiple agents a common source of reference.  

 
Symbol grounding assumes that agents see their 

environment in terms of objects.  However, situated, 
embodied robots instead see their environment in terms of 
sensor readings, observations.  Symbol anchoring is a 
linguistic term borrowed originally from the study of 
situational semantics.  It originally referred the attempt to 
find meaning in sentences in the environment in which they 
are spoken [3].  In robotics, we add a high degree of 
pragmatism to symbol anchoring as we are interested in 
using it to help create functional multi-robot systems.  Thus 
symbol anchoring involves taking techniques from pattern 
recognition, to find objects in observations, and then using 
symbol grounding to symbolically represent these objects. 

 
Symbol anchoring is an active area of research.  However, 

many of these experiments only use two robots or less, thus 
limiting applicability and not adequately addressing the 
consensus problem.  For example, in [11], two robots are put 
in an environment with multiple light sources.  Their task is 
to symbolically anchor the light sources with four light 
sensors on each robot.  Also, many of these experiments 
have in some way pre-optimized sensors or symbols based 
on very specific domain knowledge.  Feature extraction from 
sensors also is pre-determined, often using techniques from 
computer vision to find features such as colored shapes or 
orientation of objects [9], [10].  In [4], two cleaning robots 
develop a lexicon of symbols describing their locations and 
locations of litter piles.  Feature detectors interpret sensor 
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Ah, a new specimen! I 
name you “cylinder”. I already saw this specimen 

and named it “tube”! 

Fig. 1.  Illustration of the problems in reaching a symbol anchor consensus in a 
distributed population operating in an uncharacterized environment. 



 
 

 

data and send these features to competence modules.  Once 
again the feature detector has been designed in such a way 
that it looks to detect specific features, thus incorporating 
domain knowledge.  Still other research puts a human in the 
loop, and/or establishes a command hierarchy among agents 
[6]. 

 
There are a number of challenges to symbol anchoring.  

For example, in a dynamic environment, internal 
representations of symbols must change in order for the 
system to remain grounded. However communicated 
symbols cannot change so quickly as to prohibit 
understanding between agents. Thus there must be a 
mechanism to update internal representations based on 
information communicated from other agents as well as new 
observations [4]. In other words, anchoring involves 
establishment and maintenance of these connections 
between symbols and sensor data. Besides anchor 
maintenance, other challenges include the uncertainty and 
ambiguity in real sensor measurements, the possible 
indefiniteness of an object (is an object an instance of some 
broader class of objects), the point of view an object is 
viewed from by different agents, and the reaching of 
consensus on symbol anchorings between robots [3].  
Regarding consensus, the problem is compounded by 
polysemy (where one symbol maps to multiple specimen) 
and synonymy (where one specimen maps to multiple 
symbols).  Polysemy and synonymy create incoherence in 
inter-agent comprehension, thus it is important that 
polysemy and synonymy be damped over time [10].  

 
The long-term goals of this project are as follows. Agents 

should be able to perform the distributed exploration of 
environments (extra-planetary surfaces, the ocean floor, 
etc.) where the risk of failure due to communication 
occlusions and general system failure is great enough to 
justify a distributed approach, i.e., loss of a single agent is 
negligible. Agents should investigate and gather data on 
interesting discovered specimen based on prior conditions 
generally defining what is interesting. Finally, it is desired 
that scalability issues of communicating between large 
numbers of agents be overcome by communicating in a 
distributed manner through a learned communication 
system. 

 
Towards those goals, this specific research effort 

examines symbol anchoring consensus among populations 
of distributed homogeneous agents. Other perspectives used 
to study symbol anchoring and its related issues include 
linguistics [1], artificial intelligence [5], intelligent control 
[8] and centralized control [2].  The approach presented 
here is a pragmatic one which could be applied to the desired 

applications, borrowing from these other areas as needed.  
As an example, a centralized control approach leads to 
problems when the population size is increased to a large 
number (100+) similar to what might be used in a real-world 
application.  With large populations, it becomes more 
efficient to allow information to be processed in a 
distributed, parallel manner.  This work takes a distributed 
approach, but acknowledges that a form of central control 
could eventually be necessary in gathering the information 
discovered by the distributed robot population. Also, this 
research assumes that no domain knowledge is available. 
Thus segmentation of sensor data into potential objects, 
hereafter called specimen, must be completely unsupervised. 
Perfect communication back to human operator may not be 
available due to time delays or occlusions. Also, the lethality 
of the environment to the agents presents a potential 
problem to using a well-defined hierarchy. These problems 
are avoided in this research by making all agents complete 
autonomous and of equal rank. 

 
More specifically, a combination of principal component 

analysis (PCA) for dimensional reduction, hierarchal 
clustering for specimen identification and discriminant 
analysis for specimen classification is used in order to learn 
a specimen lexicon directly from the environment.  Two 
simple methods for symbol anchoring consensus are then 
explored. A model of the consensus process is used to 
investigate scaling the number of agents upward in relation 
to the consensus method used. 

 
This paper is organized as follows. Section II presents the 

simulation environment in which agents are placed. Section 
III details the symbol anchor consensus algorithms, which 
are capable of dealing with polysemy and synonymy. Section 
IV develops simple models of the consensus process and 
relates them to the more complex consensus problem 
presented by the simulation environment. Section V gives 
simulation results for lexicon (the set of all symbols used by 
each agent) convergence with different agent population 
sizes. Issues considered include steady-state error 
elimination, symbol diversity, robustness to sensor noise and 
scalability. 

II. LEXICON LEARNING ENVIRONMENT 

This section describes the simulation environment into 
which simulated embodied agents are placed.  Parameters 
for the simulation environment are also discussed. 

 
All agents are homogenous in that they are assumed to 

have the same sensors and actuators.  Heterogeneity can 
offer many advantages to a multi-robot system, [7], but also 



 
 

 

increases the complexity of systems.  In symbolically 
anchored systems with heterogeneous robots care must 
taken in designing specific mechanisms for interpreting 
observations made by different sensor suites into icons.  The 
problem becomes one of sensor fusion. However, since this 
paper focuses on consensus, homogeneous robots are used to 
simplify the comprehension of observation data meanings 
between agents.  Agents make these observations within 
their surrounding sensing radius into an environment tiled 
with specimen (Fig. 2). 

 
Parameters for this model include the number of 

independent and dependent sensors.  Independent sensors 
are each assigned a region in which to be active (value of 
one) and are inactive elsewhere (value of zero).  Thus, for 
example, with 3 independent sensors, there are 23, or 8, 
possible specimen types.   Dependent sensor values are used 
to artificially increase the dimensionality of observations, 
and are linear combinations of the independent sensors 
values measured in a given observation.  Readings from both 
types of sensors are then perturbed by Gaussian noise to a 
level determined by a noise perturbation parameter in order 
to model the noise present in a real-world environment.  For 
simplicity, the specimen environment is static. Agent 
movement in the environment takes places randomly.  This 
type of movement is highly inefficient, but ensures that all 
specimens will eventually be viewed.   

III. LEXICON CONSENSUS ALGORITHM 

In this section, the symbol anchor consensus algorithms, 
which can deal with polysemy and synonymy, are detailed. 

 
Agents seek to reach consensus on the lexicon. Consensus 

is composed of agreement, validity and termination. For this 
application, agreement means that there is a one to one 
mapping between every specimen-symbol pair, and that this 
mapping is the same for all agents. Validity means that if all 

agents start with an assigned symbol for a specific specimen, 
then all agents will keep this symbol assignment. Finally, 
termination means that all agents eventually reach a 
consensus with each other. More precisely, let I be a set of 
unique indices on the agents; i,j ∈ I; S be the set of all 
Specimen, Λ is the set of all symbol anchors, Σ is the set of 
assigned symbols, i.e., the lexicon, O is the set of all 
observations. Using this notation, the following functions 
are defined: G: S×I→O, H: O→Σ, Λ(S,I)=H○G, �◊∃ 
Λ:(S×I→Σ ∧ Λ  is bijective). In words, this last statement 
says that for all agents there always eventually exists a 
common mapping from specimen to symbols that is unique 
for every specimen and symbol. The algorithm to be used in 
subsequent simulations, assumes that in the worst case there 
is infinite time for convergence, and that all specimens are 
correctly identified by at least one agent. The algorithm 
proceeds according to the following steps, where times t < t’ 
< t’’ < t’’’ are used as superscripts to indicate the set value at 
a specific time. 

 
Observe: Agenti, observes specimen within its sensing 

radius over time. 
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Segment: If no symbols exist, then normalize data, 

perform PCA and hierarchal clustering to assign a symbol 
name to similar observations.  The best number of clusters to 
use, ηo, is determined as in (1) by minimizing the variance 
within a cluster and maximizing the variance between 
clusters. 
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where η is the number of clusters that the data was split into. 
After ηo is chosen, non-viable clusters containing too few 
observations are removed.   
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Classify: Otherwise perform discriminant analysis 

(minimize the Mahalanobis distance between cluster centers 
and observations) on the new observations in order to 
classify them according to pre-existing symbols. If there 
exists observations for which no acceptable symbol 
assignment can be found, add new symbols.  
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Fig. 2.  An example agent environment showing three agents and their sensing 
ranges, as well four specimens. Specimen 2 will most likely be assign two 
different names by Agents 2 and 3, thus they will subsequently have to reach 
consensus in both the name and meaning of this specimen.  
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Generate: Generate pseudo-test-observations from 

clustered data. 
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Transmit: Send generated observations to Agentj, chosen 

randomly. 
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Classify: Agentj, performs discriminant analysis on the 

new observations, classifying them according to 
pre-existing symbols.  If there is data for which no 
acceptable symbol assignment exists, then add new symbols.  
New observations may cause symbols to merge or split.  If 
new observations which are classified to a single specimen 
by Agenti are classified to multiple specimen by Agentj, or if 
new observations which are classified to multiple specimen 
by Agenti are classified to a single specimen by Agentj then 
all observations involved from both Agenti and Agentj are 
resegmented to determine the best number of clusters that 
they should be divided into based on (1). More observations 
can be requested to resolve ambiguity.  
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Assign: Without consensus feedback symbol names are 

directly accepted by Agentj from Agenti, on face value. With 
consensus feedback, as in [5], symbol names from Agenti 
cause an increase for the symbol name in Agentj’s 
Preference Vector, Pj.  The symbol with the most votes is the 
symbol that is used, for each specimen. Thus consensus 
feedback allows agents to have a memory.   In [5], the 
authors showed that using memory allows convergence in 
their system in O(Nlog(N)) as opposed to O(N2) without 
consensus feedback, where N is the number of agents in the 
population.  A similar speed-up is expected in the system 
presented here. 
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The above steps repeat with a listening and speaking 

agent being chosen randomly at each cycle through the 
algorithm to simulate the way a physical distributed system 
would proceed.  The simulation ends when a maximum 

number of steps have been exceeded, or when the lexicon 
converges and remains at the number of specimen in the 
environment for a fixed number of steps. 

IV. SIMPLE CONSENSUS MODELS 

In this section simple models of the consensus process are 
developed and related to the more complex consensus 
problem presented by the simulation environment.  For the 
general case, this consensus is extremely difficult to prove, 
thus consensus is shown to occur for simple cases 
mathematically, with more general cases left to simulation. 

 

Case 1:  Three agents all uniquely initialized to different 
symbol names for one specimen 

 
For this case, perfect segmentation is assumed. State A is 

defined as the state where each agent has a different name 
for the specimen (1-1-1); state B occurs when two agents 
agree on the name, but the other does not (2-1); and state C 
is the consensus state (3).  A listening and a speaking agent 
are chosen at random.  The listening agent automatically 
accepts the speaking agent’s name for the specimen.  The 
state flow can be described as a Markov Chain. 
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T3 is the transition table for the Markov Chain in Fig. 3. 

State A is ignored because state B necessarily follows from 
state A. Raising T3 to the nth power, gives probabilities that 
starting from state r (the row index), state c (the column 
index) is reached after n transitions. The consensus state is 
an absorbing state in that once achieved, the agents will 
never fall out of consensus (according to consensus validity).  
For three agents, the number of steps it takes to achieve a 
95% certainty that the agents have achieved consensus is 
7.4.  As the number of steps approaches infinity, this 
probability approaches 1, thus the lexicon asymptotically 
converges with certainty of one (consensus agreement and 
termination). 

 

Fig. 3.  Markov chain for the consensus process with three agents. 
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Case 2: Four and five agents all uniquely initialized to 
different symbol names for one specimen 

 
These cases are found in an identical manner to case for 
three agents, but are more complex.  The state definitions for 
these cases are as follows, with the format of (Number of 
Agents, Lexicon Configuration): (4,2-1-1), (4,3-1), (4,2-2), 
(4,1), (5,2-1-1-1), (5,3-1-1), (5,2-2-1), (5,3-2), (5,4-1), and 
(5,5).  
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For four agents, the number of steps it takes to achieve a 

95% certainty that the agents have achieved consensus is 
18.7, while for five agents it is 34.1 steps.  Although, it is 
dangerous to generalize based on only three cases, the given 
data converges with 95% certainty in O(N2.1).  This result 
makes sense considering the slightly different case where 
half an agent population is initialized to one symbol, and the 
other half to a different symbol.  In this case, consensus is 
reached in O(N2) [5], slightly faster as would be expected. 
Once again, as the number of steps approaches infinity, the 
probability of convergence approaches 1, thus the lexicon 
asymptotically converges with certainty of one.  

 

Case 3:  Three agents and two specimen with no 
initialization 

 
In this case, the initial lexicon size of the population is 

zero. When an agent is chosen to speak, if it has not been 
chosen before, it first observes its environment.  It segments 
the data into clusters, and assigns a symbol name to each 
cluster.  Next, the agent attempts to communicate with other 
agents that have already segmented their environment.  
Agents are assumed to be randomly placed on each turn. 
There is equal chance of observing any specimen, thus the 
probability of observing any specimen is ½. The notation 
used to represent states in this case includes the symbol used 
by each agent for each specimen.  For example, consensus is 

represented by {[α,β], [α,β], [α,β]}, where {α,β,γ,δ}∈Σ.  All 
of the states in Table I should be viewed as including those 
states symmetric to themselves as well.  For example, {[α,β], 
[α,0], [β,0]} and {[α,β], [β,0], [α,0]} are symmetric.  Zero 
designates that this specimen has not yet been discovered by 
that agent. 

 
Once again a state transition matrix can be generated 

using probabilities found by examining the probability that a 
specific agent is chosen to speak, the probability that a 
specific agent is chosen to listen, and the probability that a 
specific specimen with be observed. For this case, the 
number of steps it takes to achieve a 95% certainty that the 
agents have achieved consensus is 14, approximately twice 
that of the simpler case with three agents.  As before, as the 
number of steps approaches infinity, the probability of 
convergence approaches 1, thus the lexicon asymptotically 
converges with certainty of one.  

 
TABLE I 

STATE DEFINITIONS FOR LEXICON AGREEMENT WITH TWO SPECIMENS, 
THREE AGENTS AND NO INITIALIZATION 

Lexicon Configuration 

{[0,0],[0,0],[0,0]} 
{[α,0],[0,0],[0,0]} 
{[α,β],[0,0],[0,0]} 
{[α,β],[0,β],[0,0]} 
{[α,β],[α,β],[0,0]} 
{[α,0],[α,0],[0,0]} 
{[α,β],[α,0],[0,0]} 

{[α,β],[α,β],[γ,δ]} 
{[α,β],[γ,β],[α,0]} 
{[α,β],[α,β],[0,γ]} 
{[α,β],[α,0],[0,β]} 
{[α,β],[0,β],[0,β]} 
{[α,β],[0,β],[0,γ]} 
{[α,β],[0,γ],[0,γ]} 
{[α,β],[α,β],[α,0]} 
{[α,0],[γ,0],[γ,0]} 
{[α,0],[α,0],[α,0]} 
{[α,β],[α,β],[α,β]} 

 
Having demonstrated convergence in the above cases, we 

now conjecture, but do not prove, the following. 
 

Conjecture 1: If agents do not always perfectly segment 
their environment initially consensus will still occur 
according to a very similar mechanism as that presented in 
Cases 1, 2 and 3 as long as at least one agent eventually 
correctly and uniquely segments each specimen (the 
specimen are then labeled as being distinct), and when 
presented with such observations, other agents split and 
merge symbols as appropriate.   

 
With imperfect classification, polysemy and synonymy 



 
 

 

can appear in the specimen-symbol mappings.  Thus 
symbols must subsequently be merged and split as 
appropriate.  However, the imperfect classification will 
create more states in the Markov Chain, and thus further 
increase convergence time.  In all the cases discussed, there 
is only one absorbing state in the chain, thus as long as there 
exists a path from the beginning state to the absorbing state, 
the system will eventually converge to the absorbing 
consensus state.  It follows from Conjecture 1 that such a 
state always exists when the conditions in the conjecture are 
met. 

V. SIMULATION RESULTS  

In this section simulation results are given for lexicon (the 
set of all symbols used by each agent) convergence with 
different agent population sizes. Issues considered include 
steady-state error elimination, symbol diversity, robustness 
to sensor noise and scalability. In describing the simulations 
to be presented, the following format will be used: (A, N, W, 
C), where A is the number of agents; N is the number of 
specimen; W is the number of grids on a side of the 
environment; and C is the number of simulation iterations 
over which to average results.  

 

A.  Eliminating Steady-State Error in Lexicon Convergence 

 
There are two issues that prevent convergence in the 

presented simulations. 
 

� More time is needed because contact between agents is 
probabilistic.  In these cases, the final lexicon size is too 
high. �

� Not all specimens have been initially correctly 
classified. In these cases, lexicon size is too low.  In 
order for agents who have misclassified specimen to be 
able to correctly merge or split them, they need a correct 
model.  

 
Thus, improvements were made to the simulation.  

Symbols that are diminutive, in that they have too few 
observations due to the rarity of the specimen, are 
augmented by adding more observations.  The minimum 
percentage of the world that a specimen covers is increased 
in order to prevent specimen rarity. Also a longer time is 
allowed for convergence to be reached. These improvements 
drop the number of non-converging trials over a run of 100 
simulations from 55 to 0. Converging results are shown in 
Fig. 4 using consensus feedback. 

 

B.  Symbol Diversity 

 
An alternative method of visualizing lexicon convergence 

is by looking at the diversity in names for a single specimen 
as a simulation proceeds. Specimen that are more commonly 
sensed by agents as in Fig 5a tend to have a longer more 
complicated convergence process as there are more initial 
naming conventions compared to the more rarely observed 
specimen in Fig 5b.  

 
Regarding the effects of using of consensus feedback, 

without consensus feedback (Fig 5c), the percentage 
corresponding to each symbol varies greatly on every 
iteration.  It is also more difficult for new symbols to gain a 
foothold.  With consensus feedback (Fig 5d) there is more 
stability as symbols are eliminated more gradually. 
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C.  Robustness to Noise 

 
Small amounts of noise in systems can be beneficial in 

helping to generalize parameters or mappings, such as 
symbol anchors. However, too much noise prevents 
convergence to the correct lexicon size as clusters are 
incorrectly merged.  In Fig. 6, as noise perturbations are 
increased above 20%, lexicon convergence is greatly 
diminished.  

 

D.  Scalability 

 
In order to be applicable to the applications previously 

mentioned the algorithm must be able to scale to larger 
amounts of agents. As the number of agents is scaled upward 
the benefits of using consensus feedback become more 
apparent.   

 
In general, consensus feedback causes a higher overshoot, 

but then allows the final value to be approached at a faster 
rate than is the case without consensus feedback. The use of 
consensus feedback in this distributed system can be roughly 
compared to the use of proportional-derivative feedback in a 
traditional control system.  Without using consensus 

feedback, the system resembles more of a control system 
with proportional control. Fig. 7 demonstrates this concept 
by laying out the system in terms of a traditional control 
system. 

 
In the case of no consensus feedback, as the number of 

extra symbols above the ideal value decreases, the consensus 
algorithm will be able to decrease the number of symbols 
less because so many agents already agree.  It is 
proportionally activated. In the case of consensus feedback, 
the proportional nature of the consensus algorithm 
described remains in take, but also the number of extra 
symbols changes in proportion to the change in the number 
of extra symbols.  If symbols are being eliminated with 
consensus feedback, it means that there has been enough 
communication throughout the population and that the 
symbols have been around long enough to dominate.  
However, for the test cases looked at in this paper, stability 
does not appear to be affected as is the case with traditional 
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Fig. 8.  (6,5,11,30) without consensus feedback, actual results (a) and modeled 
results (b). 
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Fig. 9.  (6,5,11,30) with consensus feedback, actual results (a) and modeled 
results (b). 
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Fig. 6.  Lexicon Convergence vs. Noise Perturbation.  Error Bars indicate one 
standard deviation.  
 

Environment 

Segment 

If (|Σp|-|S|)>0, 
update symbol 
anchors based on 
new observations 

For two agents, if Σ1≠Σ2, perform 
consensus algorithm  

-

|S| 

|Σp|’ 

|Σp| 

Fig. 7.  Symbol anchoring consensus system drawn to resemble a traditional 
control system, with the consensus algorithm acting like a feedback controller.  
|S| is the ideal number of specimen in the environment, Σ represents the lexicon 
for specific agents or for the entire population, depending on the subscript. 
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Fig. 10.  (25,4,10,10) With consensus feedback, the average convergence time 
was 732.6 iterations, with 232.3 standard deviation. 



 
 

 

control systems. 
   
Due to the intensive nature of full simulations, a 

simplified model was developed in which segmentation and 
classification were modeled probabilistically, while the 
consensus algorithm was performed as normal. This model 
was tested and compared to simulations using six agents.  
The model results are similar is respect to maximum 
overshoot value, time of maximum overshoot, convergence 
times, and general shape of curves. Results are shown in Fig. 
8 and Fig. 9. 

 
Model results indicate that for populations larger than 29 

agents, consensus feedback will converge faster. This 
prediction is consistent with the simulation results in Fig. 10 
and Fig. 11 in which convergence times are very close.  

 
If the number of agents is increased further to 100 agents, 

then the use of consensus feedback allows convergence to be 
reached nearly 50 times as fast (approximately 4,000 
iterations with consensus feedback vs. 200,000 iterations 
without consensus feedback).  With consensus feedback, the 
maximum lexicon size is large, but the rate of convergence 
is much more rapid.  

VI. SUMMARY AND FUTURE WORK 

 
In this research effort an algorithm that allows agents to 

reach consensus on a specimen lexicon in which the 
specimen were discovered by the agents was designed, 
simulated and modeled.  Agents anchored symbols to 
specimens without any prior domain knowledge. Lexical 
convergence and the speed thereof, were derived 
mathematically for simple cases, and conjectured to occur 
for more complex cases. Problems in convergence in 
subsequent simulations were investigated and addressed. 
The use or non-use of consensus feedback was examined, 
with the results being compared to typical control system 

responses. Consensus feedback was shown to be analogous 
to a proportional-derivative feedback controller in lexicon 
convergence. For agent populations of size greater than 29, 
consensus feedback was shown to be a faster method.  
Polysemy and synonymy were dealt with by appropriately 
merging and splitting symbols. The effects of scaling the 
number of agents and adding noise were also investigated 
in-line with the pragmatic approach described in Section I. 

 
Much work remains to be done in this research effort.  In 

the future this research effort will investigate issues such as 
language syntax, the use of non-binary sensors, standard 
non-linear data sets such as the Iris data, heterogeneous 
sensor suites, and spatial effects where agents are restricted 
to communicate only with their neighbors. The above issues 
will be examined in regards to standard issues of 
convergence, stability, and robustness in the face of 
disturbances (such as the loss of an agent) as language 
lexicon and syntax are modulated with environmental 
complexity.  
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Fig. 11.  (25,4,10,10) Without consensus feedback, the average convergence 
time was 676.6 iterations, with 376.8 standard deviation. 
 


